
Roberto E. Lopez-Herrejon, Jabier Martinez,
Tewfik Ziadi, Anil Kumar Thurimella, (eds.)

1
st
International Workshop on Reverse

Variability Engineering
(REVE 2013)

http://www.sea.jku.at/reve2013/

Pre-proceedings

held on 5th March 2013 in conjunction with the
17

tℎ

European Conference on Software Maintenance and
Reengineering (CSMR 2013)

Genova, Italy

II

Variability management of a product family is the core aspect of
Software Product Line Engineering (SPLE). The adoption of an
SPL approach requires a high upfront investment that will allow to
automatically generate product instances based on customer
needs

Mining existing assets could dramatically reduce the costs and
risks of this adoption. Those existing assets use to be similar
product variants that were implemented using ad-hoc reuse
techniques such as copy-paste-modify. Bottom-up approaches to
automatically extract variability management related artifacts could
be proposed, applied, validated and improved in this domain. We
propose this workshop to fill the gap between the Reengineering
and SPLE communities.

III

Program Committee

Christian Kastner, Carnegie Mellon University, USA
Vander Alves, Universidade de Brasilia, Brazil
Angela Lozano, Universite Catholique de Louvain, Belgium
Salvador Trujillo, Ikerlan, Spain
Danilo Beuche, Pure Systems, Germany
Goetz Botterweck, Lero, Ireland
Mathieu Acher, University of Rennes, France
Jens Krinke, University College London, UK
Julia Rubin, IBM, Israel
Rainer Koschke, University of Bremen, Germany
Marco Tulio Valente, Universidade Federal de Minas Gerais, Brazil
Jennifer Pérez Benedí, Universidad Politécnica de Madrid, Spain
Oscar Díaz, University of the Basque Country, Spain
Øystein Haugen, SINTEF, Norway
Kentaro Yoshimura, Hitachi, Japan
Sven Apel, University of Passau, Germany
Elmar Juergens, CQSE, Germany
Jerome Le Noir. Thales Research and Technology, France

Workshop Organisers

Roberto E. Lopez-Herrejon, Johannes Kepler University Linz, Austria
Jabier Martinez, itemis France SARL, Paris, France
Tewfik Ziadi, UMR CNRS, LIP6-MoVe, Paris, France
Anil Kumar Thurimella, Harman & TU Munich, Germany

This research was partially funded by the Austrian FWF under agreement
Lise Meitner Fellowship M1421-N15.

We, the workshop organisers, are grateful to the members of the program
committee and the reviewers. We also would like to thank the workshop
chairs of CSMR 2013, Walter Cazzola and Michel Wermelinger, for their
support and the opportunity to hold REVE 2013 in conjunction with this
conference.

Post-proceedings to be published as ECEASST report.

IV

Table Of Contents

A Graph-Based Analysis Concept to Derive a Variation Point Design from Product
Copies ...1
Benjamin Klatt, Martin Küster, Klaus Krogmann.

Extracting variability from C and lifting it to mbeddr ..9
Federico Tomassetti, Daniel Ratiu

Identifying Traceability Links between Product Variants and Their Features17
Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony, Ra’fat
Al-msie’deen

A Graph-Based Analysis Concept
to Derive a Variation Point Design from Product Copies

Benjamin Klatt, Martin Küster, Klaus Krogmann
FZI Research Center for Information Technology

Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
{klatt,kuester,krogmann}@fzi.de

Abstract—Software product lines are a widely accepted
strategy to develop software products with variable features.
Deriving a product line from existing customised product
copies is still an open issue. Existing approaches try to extract
encapsulated reusable components, or analyse features on a
product management level. However, support for understand-
ing implementation differences and designing variation points
to consolidate the customised copies is still missing. In this
paper, we present the analysis concept of our SPLevo approach,
to identify related variation points in order to recommend
reasonable variation point designs. To illustrate its application,
we provide an example analysis.

Keywords-Software Product Line, Reverse Engineering, Soft-
ware Analysis, Product Copies

I. INTRODUCTION

Productivity, reuse and customisation for individual re-
quirements are major goals in software engineering. The
software product line approach has been established to
target these goals with explicit and managed variability
[1]. A company can serve all their customers in a specific
domain with a variable core software product, which can
be configured, extended, or parametrised for the customer-
specific needs. Building solutions on such a product line
aims to deliver a better tested product with less development
and maintenance effort in the long term.

Ideally, the required variability of a software product line
is identified as part of the requirements engineering process,
and suitable variability realisation techniques are chosen
during the software design phase [2]. Such a proactive
approach allows to benefit from the product line advantages
right from the beginning. However, in reality, it requires high
upfront investments, and postpones the first product delivery.

As a result, many companies start implementing the first
product and copy and customise this code base afterwards
for specific needs of other customers. After better under-
standing the domain and their customers’ needs, they have
to reactively transform those variants into a common product
line [2]. This procedure ensures, that only mature, tested
and actually needed features are integrated into the common
product line, but is a challenge by itself.

Today, most existing approaches focus on forward engi-
neering or treat variability without respecting the product life

cycle at all. Many approaches exist for varibility specifica-
tion as surveyed by Chen et al. [3] and different variability
realisation techniques are available as surveyed by Patzke et
al. [4] and Svahnberg et al. [5]. But, support for reactively
migrating customised product variants into a common prod-
uct line is still an open issue. Such a consolidation process
is challenging as the number of differences between two
product variants is typically high. A product line engineer,
responsible for a consolidation, needs to find the product
copies’ differences, identify the ones relevant for the product
line variability, understand their relations, and design proper
variation points.

Only a few existing approaches for reactively build prod-
uct lines try to handle the challenge and automation of vari-
ability reverse engineering. The existing approaches focus on
a limited scope of the implementations under study or aim
to extract encapsulated, reusable assets of the software. For
example, Graaf et al. [6] analyse execution traces of product
variants, which can only identify differences in the scope
of their executed functionality. Koleilat et al. [7] facilitated
clone detection to extract reusable assets. None of them
considers the product variants as a whole.

In this paper, we present our variability analysis concept
developed as part of our overall approach to consolidate
customised product copies into a common software product
line (SPLevo [8]). We use a graph-based representation of
variation points to combine several basic relationship anal-
ysis strategies. We further derive design recommendations
from the identified variation point relationships to support
the product line engineer in his design task.

The contributions of this paper are i) a graph-based com-
posite analysis to recommend variation point aggregations,
ii) a set of basic analysis strategies to identify variation point
relationships, and iii) a rule-based concept to derive recom-
mendations from the variation point relationship graph.

The rest of this paper is structured as follows: Section II
provides a short overview of the SPLevo approach incorpo-
rating the outlined concept. Section III introduces our model
for describing variation points followed by our concept
of how to analyse instances of this model in Section IV.
Section V describes the basic variation point relationship
analysis strategies, before an illustrating example of their

1

REVE 2013 Pre-Proceedings

application is given in Section VI. Section VII presents
work related to our approach. In Section VIII we clarify our
assumptions and limitations and give a conclusion of our
work presented in this paper and an outlook on our future
work in Section IX.

II. SPLEVO APPROACH OVERVIEW

The SPLevo approach aims to support product line en-
gineers in consolidating customised product copies into a
common product line [9]. The core idea is a semi-automatic,
model-driven process to identify the differences between
product variants and to guide the product line engineer
in iteratively creating a proper variation point design to
later derive refactoring support to perform the product line
consolidation [10]. The large amount of fine-grained, source-
code-level differences to consider and to assess, makes sup-
port for finding relevant and related differences necessary.

Figure 1 presents the main process defined in our SPLevo
approach. First, software entity models (i.e. abstract syntax
trees (AST) [11] and inventory models [12]) are extracted
from the product copies’ implementations. Those models are
compared in the second step to identify the implementation
differences. Next, we initialise a model describing fine-
grained variation points based on these differences. This
model is then analysed (”variation point analysis”) to guide
the product line engineer in iteratively refining the variation
points until he is satisfied with the variability design. As
a last step, refactoring support to change the implemention
is derived (e.g. insert ”#ifdefs” or change to dependency
injection).

Select
Analyses

Variability
Sufficient?

[yes]

[no]

Analysis 1 Refine
Variation Point

Model
...

Analysis n

Extract
Software
Models

Difference
Analysis

Derive
Variation Point

Model

Refactor
to SPL

Variation Point Analysis Design Decision

Figure 1. SPLevo Main Process

Such a consolidation will always require manual decisions
because of organisational issues or personal preferences
on equivalent alternatives in a typically large design space
(e.g. because of available implementation techniques, code
structuring, or feature granularity). The SPLevo approach
supports automated variability reverse engineering, but ex-
pects the product line engineer to accept, decline or modify
the recommended variation point refinements and to provide
individual product line preferences.

III. VARIATION POINT MODEL

Similar to Svahnberg et al. [5], we explicitly distinguish
between features on the product management level and
variation points on the software design level [10].

Figure 2. Variation Point Meta-Model (attributes omitted for simplicity)

Figure 2 presents the meta model of the Variation Point
Model defined in the SPLevo approach. It is a software
design model to describe explicit variation points in a
software product line. It allows to correlate and aggregate
fine-grained differences into more coarse-grained and better
manageable ones.

A VariantionPoint represents a location in the software
at which a variability mechanism should allow to switch
between alternative implementations. The location of the
VariationPoint is specified by it’s reference to an ASTNode
element of an abstract syntax tree model (”‘java.ecore”’ in
Figure 2). The alternative implementations, available for
a VariationPoint, are described by it’s Variant elements.
Each of them references one or more software entities (e.g.
classes, methods, statements) that implement this specific
alternative.

As identified by Svahnberg et al. [5], a single feature can
be implemented by one or more variation points in the soft-
ware. This is reflected in the Variation Point Model by the
VariationPointGroup element. It groups all VariationPoints
that might be located at different ASTNodes and links to
the variable Feature they contribute to. In feature models,
a variable Feature is linked with it’s optional or alternative
child features. For this, Variant elements reference the child
feature they contribute to.

The VariationPointModel element represents the root ele-
ment of the model. It contains all VariationPointGroups of
related VariationPoints.

In Figure 2, the referenced Feature element origins from
the EMF feature model [13], and the ASTNode element from
the Eclipse MoDisco Java AST model [14]. Both models are
used in the currently developed prototype of our approach
[8], but the concept itself is not restricted to these concrete
feature and software entity models.

As described in the previous section, an initial Variation
Point Model is derived from the fine-grained differences
between the software entity models. This is done by creating
a VariationPoint element for each difference with a reference

2

REVE 2013 Pre-Proceedings

to the parent ASTNode of the differing ASTNodes as the
variation point’s enclosing software entity. The differing
ASTNodes are referenced as software entities by Variant
elements created for each of the product copies. This initial
Variation Point Model is then analysed to identify related
variation points and recommend refinements. How this is
done is described in the following section.

IV. VARIATION POINT ANALYSIS

The result of the variation point analysis is a Variation
Point Model describing a satisfying variability design to
serve as input for refactoring the product copies into a
software product line.

The initial Variation Point Model, derived from the differ-
ences between the product copies, represents all fine-grained
differences at the source code level. To achieve a manageable
amount of variability in the resulting product line, the
Variation Point Model must be refined. Manually analysing
all variation points to aggregate them into more corse-
grained ones is very time-consuming due to the typically
high number of differences.

To support this task, we aim to provide variation point
analyses, to identify related variation points and provide
recommendations for aggregations. In general, such prod-
uct consolidations cannot be done in a fully automatic
fashion because equivalent alternatives are possible which
are selected due to non-technical criteria, such as organ-
isational reasons or personal preferences. To cope with
this, the analysis within our SPLevo approach returns only
recommendations that the product line engineer can accept,
decline, or adapt.

The analysis returns recommendations in terms of varia-
tion point aggregations. The following subsections provide
details about our graph-based concept to combine and eval-
uate the different analyses and describe aggregation and
filtering techniques as possible variation point refinements.

A. Graph-Based Analysis Composition

Relationships between variation points can exist because
of many different aspects, such as their location or type
of modification. As our approach is to recommend aggre-
gations of variation points because of their relationships,
we consider this scenario as an edge-labelled, undirected
multigraph with the variation points as vertices, and their
relationships as edges. An edge between two variation point
nodes can be created for example because the variation
points are located in the same method. The type of a
relationship is stored as a label of the according edge (e.g.
”CS” because the relationship is derived from the code
structure). Because multiple different relationships can exist
between two variation points and each of them is represented
as an edge, this leads to the multigraph characteristic. In
addition, sub-labels can exist for the edges, to allow to

provide additional information about the relationship (e.g.
the name of the method the variation points are located in).

As shown in Figure 3, the Variation Point Model is
transformed into a graph representation by creating a node
for each variation point. Next, this graph is handed over to
the intended analyses which are performed in parallel. Each
analysis creates edges corresponding to the relationships it
has identified. Those edges are labelled with the type of
relationship identified, e.g. R1, R2, and R3. In the next step,
the edges returned from the individual analyses are merged
into a combined graph which now contains all edges.

In the final step of the analysis process, the recommen-
dations to refine the Variation Point Model are derived by
detection rules inspecting the combinations of relationship
types between variation points. A detection rule is specified
for a set of edge labels as it’s matching pattern. In addition,
it specifies a refinement to recommend in case of a pattern
match. If a detection rule matches a subgraph of variation
points, a refinement recommendation is created for the
involved variaton points according to the rule’s specification.
This refinement is stored in an overall recommendation set
to be later presented to the product line engineer.

Detection rules are always applied in a defined order
and if edges are matched by a rule’s condition, they are
ignored by any rules applied later on to prevent possibly
conflicting recommendations. The set of rules to apply
as well as their order depends on the individual product
line requirements and needs to be adapted to the basic
analyses performed in a concrete consolidation scenario.
The resulting recommendations can consider two different
types of variation point aggregations (grouping and merging)
which are described in the following subsection.

B. Variation Point Aggregation

A good variation point design is a trade-off between
providing variability for as much product options as possible
and minimising the number of variabilities to manage.
While the former obviously allows to provide more
individual product variants, the latter is a best practice for
SPL manageability, also documented by Svahnberg et al. [5].

In our SPLevo approach, we start with a fine-grained
Variation Point Model on the level of identified code dif-
ferences. In order to come up with the requirement to have
manageable amount of variation points, this requires to
aggregate variation points. We distinguish between ”merge”
and ”group” as two types of variation point aggregations
which we described in the following subsections.

1) Merge Variation Points: The variation point merge is
based on the capability of Variant elements to reference
several software entities (i.e. ASTNode elements) that im-
plement a child feature. VariationPoints are merged by con-
solidating their Variant elements and the referenced software
entities in only one of the VariationPoint elements. First, one

3

REVE 2013 Pre-Proceedings

R1,R2

R2R2
R3

R3

R2R2

R2

R1

VP1

VariationPoint 1

VariationPoint 2

VariationPoint 3

VariationPoint 4

VariationPoint 5

Variation Point
Model

Intial Empty
Graph

VP3

VP2

VP4

VP5

1

3

2

4

5

1

3

2

4

5

1

3

2

4

5

VP1

VP3

VP2

VP4

VP5

Relationship
Analyses

Combined
Graph

VariationPoint 1

VariationPoint 2

VariationPoint 3

VariationPoint 4

VariationPoint 5

Aggregation
Recommendations

m
erge

group

Detection
Rules

Figure 3. Graph-Based Analyses Composition

VariationPoint element that should survive is selected. Then,
for all Variant elements in the VariationPoints, contributing
to the same child feature, the ASTNode references are
merged into one of the Variant elements. It is ensured,
that this Variant element is contained in the surviving
VariationPoint. Finally, the remaining empty Variant and
VariationPoint elements are removed from the model.

2) Group Variation Points: The variation point grouping
is based on the explicit group structure in the Variation
Point Model as described in Section III. Even in the initial
Variation Point Model, each VariationPoint is assigned to
a VariationPointGroup. A set of VariationPoints is grouped
by selecting one of their VariationPointGroup elements that
should survive and moving all VariationPoint elements into
this. Afterwards, the remaining empty VariationPointGroup
elements are removed from the Variation Point Model.

C. Variation Point Filtering
Complementary to the previously described aggregations,

variation points can be filtered from the Variation Point
Model. This can be done, for example, to remove identified
variation points which are not of interest for the product line
engineer and his intended product line. In such a case, the
variation point is simply removed from the Variation Point
Model. A removed variation point, will no longer result in
a refactoring advice in the downstream process.
Filtering strategies are not part of the analysis discussed in
this paper but mentioned for completeness as an alternative
Variation Point Model refinement.

V. RELATIONSHIP ANALYSES

As described in the last section, our variation point
analysis is a composed analysis of the relationships between
variation points. It allows for the use of serveral basic anal-
yses which focus on specific relationship types according to
different aspects of software changes.

We have identified a list of different relationship types
between variation points and according strategies to identify
them:

• Code Structure (CS)
• Program Dependency (PD)
• Data Flow Dependency (DFD)
• Program Execution Trace (PET)
• Change Type (CT)
• Change Pattern (CP)
• Cloned Change (CC)
• Semantic Relationship (SR)
• Modification Time (MT)
Those strategies are discussed in more detail in the

following subsections.

A. Code Structure (CS)

The code structure analysis studies the phyisically im-
plemented code structure, such as statements contained in
methods and methods contained in classes. Variation points
located in the same structure are identified to have a code
structure relationship. Examples for such relationships are:

• Statements in the same block statement
• Statements in the same method
• Methods in the same class
• Classes in the same component
Up to the level of classes, this hierarchy is directly

provided by the software entity models extracted from the
implementations under study. Depending on the product
copies under study it might be possible to get higher level
structures, e.g. a component architecture, from documen-
tation or reverse engineering techniques. If architecture
information is available it could be included in the code
structure analysis [15].

B. Program Dependency (PD)

The program dependency analysis identifies dependencies
between the variation points’ software artifacts based on pro-
gramming language features. For example, the PD analysis
identfies relationships between a variation point containing
a varying variable declaration statement and all variation
points which describe added, deleted or changed statements
consuming this variable. Program dependendencies overlap

4

REVE 2013 Pre-Proceedings

with data flow dependencies described below but are not the
same.

C. Data Flow Dependency (DFD)

A data flow dependency identifies sofware elements which
handle the same data object and potentially influence each
by this data object. The software entity models extracted
from the implementations are sufficient for a static data flow
analysis. And, because the data flow is inspected, only data
processing model elements need to be considered. Examples
for potential dependencies are:

• Statements manipulate the same variable
• Method calls with one using the others’ result as input
• A statement depends on a changed class attribute
• A method invocation of a changed method
Adding a data object identifier as an additional sub-label

to the data flow dependency relationship label ensures to not
mix up relationship edges resulting from different data flow
dependencies.

D. Program Execution Trace (PET)

Program execution traces represent a programs execution
flow monitored during the execution of one or more specifc
features. They can be gathered from instrumenting the
program code before it’s execution. Alternatively, a profiler
can be used, that returns information about the dynamic
beahaviour of the software, e.g. method invocations or object
instantiations.

Variation points represent locations of variability. If the
locations of two variation points are contained in the same
execution trace, this is considered as a program execution
trace relationship between those variation points. An iden-
tifier of the executed feature, respectively of the execution
trace is added to the relationship label. This information
ensures to not mix up variation point relationships resulting
from execution traces of different features.

The execution traces are external information sources
which need to be included by the analysis. This also requires
to match the elements of the execution traces to elements
in the software entity models referenced in the Variation
Point Model. This can be done by matching the full qualified
names of the software entities.

E. Change Type (CT)

A change type describes a modification of a software
entity, e.g. a parameter added to a method signature or a
statement removed from a method body. Fluri et al. [16]
have developed a taxonomy of such change types to analyse
the evolution of a single software system.
However, those change types can also be used for a variation
point analysis. In a first step, the differences between the
variants of a single variation point can be classified accord-
ing to a change type taxonomy as provided by Fluri et al..
In a second step, variation points classified with the same

change type can be identified and a relationship edge can
be created with a change type relationship label. Adding the
specific type of change to the relationship label ensures that
relatinships resulting from different changed types are not
mixed up.

F. Change Pattern (CP)

A change pattern also describes a modification between
the variants of a variation point. Change patterns can involve
multiple software entities and can be specific to the system
under study. For example, a change pattern can describe that
a boolean parameter is added to a method signature, checked
for a null value in a conditional statement at the beginning
of the method, and the control flow is returned if a null
value is found. In addition, it is possible to specify low-
level change types more specifically. For example, not only
all variation points with an added parameter can be detected,
but all variation points with an added parameter of a specific
data type and a specific name.

If two variation points match to the same change pattern,
a relationship edge is created between them and labelled as
change pattern relationship combined with an identifier for
the specific change pattern as sub-label.

Compared to the change type analysis, the change pattern
analysis is not limited to standard software changes. It is able
to consider a combination of multiple changes and provides
a higher flexibility. The patterns must be specified in advance
of the analysis.

G. Cloned Change (CC)

According to Roy et al. [17], ”a code clone are two
code fragments which are similar by a given definition of
similarity”. Clone types range from direct copies up to
code sections that perform the same computation but have
different implementations. Roy et al. further specified four
types of clones:

• Type 1: Code Layout & Comments
• Type 2: Literals Changed
• Type 3: Added, Changed, or Removed Statements
• Type 4: Same Computation but other Implementation
The cloned change analysis makes use of this by applying

a clone detection to the code changes of the variation points.
For example, if two variation points are about a set of added
statements, the clone detection is applied to those statements
to check if the same code has been added at these variation
points. If this is true, a code clone relationship edge is added
for those two variation points.

Compared to the previous change type and change pattern
analysis, the cloned change analysis makes use of a mining
approach without predefined generic or specific change
patterns to match. Furthermore, depending on the analysed
types of clones, additional similarities which are not possible
to be specified as patterns might be detected.

5

REVE 2013 Pre-Proceedings

H. Semantic Relationship (SR)
Developers often introduce semantics not only in com-

ments but also in the names of their variables, methods and
classes [18]. Semantic code clustering techniques take use
of this to find clusters of related code in software products.
The semantic relationship analysis makes use of such tech-
niques to identify relationships between variation points.
The semantic clustering is applied to the software entities
referenced by variants of the variation points under study.
The clustering algorithm will return related software entities.
The referencing variants will provide the link back to the
enclosing variation points. If more than one variation point
is connected to such a cluster, a relationship edges labelled
as semantic relationship with an identifier for the semantic
cluster are created between them.

I. Modification Time (MT)
The modification time analysis investigates in changes

performed at the same time. This is applied to software
elements referenced by variants contributing to the same
child feature. If software entities referenced by variants of
two variation points have been modified at the same time,
an edge labelled as modification time relationship is created
between those variation points.

The software entities’ modification time is typically pro-
vided by a revision control system such as cvs, git or svn.
When a developer has finished a modification, he commits
one or more resources, each with one or more modified
software entities, into the system. The time of the commit
is interpreted as modification time instead of the exact point
in time when a developer has modified a single file on his
local system. The later is rarely available and the commit
provides more useful information because more than one file
is involved and a commit typically represents a completed
modification.

In addition to the time of the commits, the commit
message can be used to identify related commits. This
potentially allows to identify even more software entities
changed together compared to considering only a single
modification.

VI. ILLUSTRATING EXAMPLE

In [15] we have introduced a greatest common devisor
(GCD) example program [19] with a native Java and a
JScience-based product variant [20]. The two implementa-
tions differ in a method named gcd(). This method trans-
forms two string parameters into numeric values, calculating
their GCD, and returning the result as a string as shown in
Listing 1 and 2.

Listing 1. Standard Java Implementation
import java.math.BigInteger; //VP1
...
public String gcd(String v1, String v2){
BigInteger intV1 = new BigInteger(v1); //VP2
BigInteger intV2 = new BigInteger(v2); //VP3
BigInteger gcd = intV1.gcd(intV2); //VP4
return gcd.toString(); //VP5
}

Listing 2. JScience-Based Implementation
import org.jscience.mathematics.number.LargeInteger; //VP1
...
public String gcd(String v1, String v2){
LargeInteger intV1 = LargeInteger.valueOf(v1); //VP2
LargeInteger intV2 = LargeInteger.valueOf(v2); //VP3
LargeInteger gcd = intV1.gcd(intV2); //VP4
return gcd.toString(); //VP5
}

Diffing the abstract syntax trees, extracted from the two
product copies, detects any changes the implementations.
This leads to five variation points which are marked as VP1
to VP5 in the presented code listings. VP1 is a changed
import. VP2 to VP4 are about statements declaring variables
of different data types. Additionally, in VP5, methods with
similar names — gcd() — but for variables of differing
types are called. While lexical similar, the semantic dif-
ference between these calls is detected by comparing the
methods’ abstract syntax trees and not textual representa-
tions only. During the analysis, the graph derived from the
initial variation point model contains nodes for each of the
variation points as shown by the Initial Graph in Figure 4.

Combined Graph

VP1

VP2 VP3

VP4 VP5

CS,PD
CS,PD

CS,PD

PD

PD

PD

CS

CS
CS

Program Dependency Graph

VP1
VP2 VP3

VP4 VP5

PD PD

PD

PD

PD

PD
Code Structure Graph

VP1
VP2 VP3

VP4 VP5

CS

CS

CS

CS
CS

CS

VP1
VP2 VP3

VP4 VP5

Initial Graph

Figure 4. Illustrating Example Graphs (sub-labels omitted for simplicity)

Applying the Code Structure analysis identifies relation-
ship edges, labelled with ”CS”, between the nodes VP2,
VP3, VP4 and VP5, because all of them are located in the
method gcd().

Applying the Program Dependency analysis identifies
relationships between VP1 and each of VP2, VP3, and VP4
because each of them makes use of the class imported in
VP1. Each of the resulting relationship edges is labelled as
”PD” and sub-labelled as ”import”. Furthermore, the Progam
Dependency analysis identifies dependencies between VP2
and VP4, VP3 and VP4, as well as VP4 and VP5 because
of their variable usages. Relationship edges with the label
”PD” and the sub-label ”variable-usage” are created.

In the last step, two detection rules are applied in the
order as they are described here. The first rule detects
edges labelled with ”CS” and ”PD (variable-usage)”. For all

6

REVE 2013 Pre-Proceedings

matching cliques in the graph, a merge is recommended for
the according variation points. VP2, VP3, VP4, VP5 in the
example. The second rule applied, detects edges labelled as
”PD (import)” and recommends to group the variation points
involved in the identified cliques. VP1, VP2, VP3, and VP4
in the example.

Later on, when the recommendations are applied, the
recommendation order will take effect. First, VP2 to VP5
are merged into a variation point VP6, and then VP6 is
grouped with VP1.

VII. RELATED WORK

Our analysis concept presented in this paper is developed
in the context of variability reverse engineering from product
copies to be consolidated into a software product line.

A strongly related approach has been developed by Graaf
et al. [6] to identify variation points based on program
execution traces. Similar to them, we consider feature
location techniques based on static or dynamic program
graph analysis as done by Rajlich et al. [21], and Wilde et
al. [22], as relevant for the detection of program differences
relating to a common feature. However, we handle this as
one technique beside others to be considered. Furthermore,
Graaf et al. do not discuss the influence or the handling of
code differences which are not relevant for the product line
variability (e.g. code beautifying etc.). In our approach, this
can be handled by filtering the according variation points.

Our work focuses on the creation of SPLs from cus-
tomised product copies with a common initial code-base,
comparable to an approach of Koschke et al. [23] facilitating
a reflexion method. However, our approach does not depend
on a pre-existing module-architecture as the extended re-
flexion method of Koschke et al.. Furthermore, we aim to
take custom SPL requirements (’SPL Profile’) into account,
such as preferences for variation point design and realisation
techniques.

Alves et al. [24] formalised valid, feature-aware refac-
torings of SPLs. Their approach is complementary to ours
and can be considered as part of our refinement step to
refactor initially created variation point models to a more
homogenious product line. They do not provide support
for identifying code differences contributing to a feature.
Instead, they assume feature models to be derived from
documentation or manual code examination. However, they
state automated support for this as desirable.

She et al. [25] have presented an approach for reverse
engineering the hierarchal feature model structure and con-
straints from a given set of features and feature dependen-
cies. We also aim to build a variability model, we do not
assume a set of features and dependencies as input as they
do, but we aim to reverse engineer this information from
the given product copy implementations. While they cluster
predefined features based on given dependencies, we cluster

variation points based on analysed relationships to identify
reasonable variable features.

Yoshimura et al. [26] also worked on identifying re-
lated variabilities to improve a product line’s manageability.
However, their goal is to recommend feature constraints
based on customer preferences from the past for an existing
product line. In contrast, we aim to identify technical and
logical dependencies between varying code entities to design
variation points as part of the process of creating a new
product line.

VIII. ASSUMPTIONS AND LIMITATIONS

The main assumption of our approach is the consolidation
of product copies with a common code base. For products
developed completly independent from each other with a
similar purpose only, the differencing in general and the
analysis concept presented in this paper in specific, cannot
be expected to return reasonable results.

Furthermore, the approach focuses on systems developed
in object-oriented programming languages. For other pro-
gramming languages, especially the concepts relying on the
code structure need to be checked and probably adapted.

Within object-oriented programming languages, the low-
est level of granularity we examine are statements. Modifica-
tions on the expression level, for example a partly modified
composite condition of an if-statement, is interpreted as a
modified if-statement rather than a changed sub-expression.
This is done to reduce the amount of information to process.

Some changes in customised product copies are not rele-
vant for variable features of the resulting software product
line, but might be of interest from a maintenance perspective.
For example, an improved code formating or documentation
should be adopted in the resulting implementation. However,
this requires a simple merge process from the customised
variant into the resulting product line, which is not in the
focus of this paper and part of our planed future work.

IX. CONCLUSION

In this paper we have presented our variation point analy-
sis concept developed in the context of the SPLevo approach
for consolidating product copies into a common product line.
The analysis identifies recommendations to refine an intialy
fine-grained Variation Point Model in terms of reasonable
aggregations. A graph-based representation of the variation
points is used to enable the composition of basic analyses for
different relationship types. The identified relationships are
represented as labelled edges within an overall graph. The
refinement recommendations are derived from this graph by
applying detection rules specifying combinations of relation-
ship types as match patterns and the type of refinement to
recommend in case of a match.

The analysis concept presented in this paper supports
a product line engineer in understanding the differences
between the product variants to consolidate and in creating

7

REVE 2013 Pre-Proceedings

a proper variation point design for the intended software
product line.

Currently, we are developing a prototype implementation
of the overall SPLevo approach as an Eclipse-based appli-
cation [8] which already automates the presented example.
We furher use and improve it within a case study facilitating
the SPL variant of ArgoUML provided by Couto et al. [27].
In this case study we analyse differing implementations
generated by their pre-processor facilities and try to reverse
engineer the originated product line as a reference. Follow-
ing this case study, we are going to analyse product copies
of our industrial partners with customised product copies
created on project contexts and due to organisational reasons.
In a further step, we will investigate sets of predefined
analysis and detection rule for typical software product line
requirements.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research (BMBF), grant No. 01IS12012B.

REFERENCES

[1] L. Clements Paul ; Northrop, Software product lines : prac-
tices and patterns, 6th ed., ser. SEI series in software engi-
neering. Boston, Mass.: Addison-Wesley, 2007.

[2] K. Pohl, G. Böckle, and F. van der Linden, Software product
line engineering: foundations, principles, and techniques.
Springer, 2005.

[3] L. Chen, M. Ali Babar, and N. Ali, “Variability management
in software product lines: a systematic review,” in Proceed-
ings of SPLC’09. Carnegie Mellon University, 2009.

[4] T. Patzke and D. Muthig, “Product Line Implementation
Technologies,” Fraunhofer IESE, Kaiserslautern, Tech. Rep.
057, 2002.

[5] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy
of variability realization techniques,” Software: Practice and
Experience, vol. 35, no. 8, pp. 705–754, 2005.

[6] B. Cornelissen, B. Graaf, and L. Moonen, “Identification of
variation points using dynamic analysis,” in Proceedings of
R2PL’05, 2005.

[7] W. Koleilat and N. Shaft, “Extracting executable skeletons,”
Cheriton School of Computer Science, University of Water-
loo, Waterloo, Tech. Rep., 2007.

[8] B. Klatt, “SPLevo Website,” 2013. [Online]. Available:
http://www.splevo.org

[9] B. Klatt and K. Krogmann, “Towards Tool-Support for Evolu-
tionary Software Product Line Development,” in Proceedings
of WSR’2011, 2011.

[10] ——, “Model-Driven Product Consolidation into Software
Product Lines,” in Proceedings of MMSM’2012, 2012.

[11] OMG, “Architecture-driven Modernization : Abstract Syntax
Tree Metamodel (ASTM),” OMG, Tech. Rep. January, 2011.

[12] ——, “Architecture-Driven Modernization : Knowledge Dis-
covery Meta-Model (KDM),” OMG, Tech. Rep., 2011.

[13] Eclipse Foundation, “EMF Feature
Model,” 2012. [Online]. Available:
http://www.eclipse.org/modeling/emft/featuremodel/

[14] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco:
a generic and extensible framework for model driven reverse
engineering,” in Proceedings of ASE’10. ACM, 2010.

[15] B. Klatt and M. Küster, “Respecting component architecture
to migrate product copies to a software product line,” in
Proceedings of WCOP’12. ACM Press, 2012.

[16] B. Fluri and H. Gall, “Classifying Change Types for Qualify-
ing Change Couplings,” in Proceedings of ICPC’06. IEEE,
2006.

[17] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming,
vol. 74, no. 7, 2009.

[18] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering:
Identifying topics in source code,” Information and Software
Technology, vol. 49, no. 3, pp. 230–243, 2007.

[19] B. Klatt, “GCD Calculator Ex-
ample,” 2012. [Online]. Available:
http://sdqweb.ipd.kit.edu/wiki/GCD Calculator Example

[20] J.-M. Dautelle, “JScience,” 2012. [Online]. Available:
http://www.jscience.org/

[21] K. Chen and V. Rajlich, “Case study of feature location using
dependence graph,” in Proceedings of IWPC’2000. IEEE,
2000.

[22] N. Wilde and M. C. Scully, “Software reconnaissance: Map-
ping program features to code,” Journal Of Software Mainte-
nance Research And Practice, vol. 7, no. 1, 1995.

[23] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann,
“Extending the reflexion method for consolidating software
variants into product lines,” Software Quality Journal, vol. 17,
no. 4, pp. 331–366, Mar. 2009.

[24] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena, “Refactoring Product Lines,” in Proceedings of
GPCE’06. ACM, 2006.

[25] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of
ICSE’11. IEEE, 2011.

[26] K. Yoshimura, Y. Atarashi, and T. Fukuda, “A Method to
Identify Feature Constraints Based,” in SPLC’10. Springer
Berlin Heidelberg, 2010, pp. 425–429.

[27] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting
Software Product Lines : A Case Study Using Conditional
Compilation,” in Proceedings of CSMR’11, 2011.

8

REVE 2013 Pre-Proceedings

Extracting variability from C and lifting it to mbeddr

Federico Tomassetti
Politecnico di Torino

C.so Duca degli Abruzzi 24,
Torino, Italy

federico.tomassetti@polito.it

Daniel Ratiu
Fortiss

Guerickestr. 25,
Munich, Germany
ratiu@fortiss.org

Abstract—Information about variability is expressed in C
through the usage of preprocessor directives which interact in
multiple ways with proper C code, leading to systems difficult
to understand and analyze. Lifting the variability information
into a DSL to explicitly capture the features, relations among
them and to the code, would substantially improve today’s
state of practice. In this paper we present a study which we
performed on 5 large projects (including the Linux kernel) and
almost 30M lines of code on extracting variability information
from C files. Our main result is that by using simple heuristics,
it is possible to interpret a large portion of the variability
information present in large systems. Furthermore, we show
how we extracted variability information from ChibiOS, a real-
time OS available on 14 different core architectures, and how
we lifted that information in mbeddr, a DSL-based technology
stack for embedded programing with explicit support for
variability.

Keywords-software product lines; abstraction lifting; embed-
ded software; projectional editors; reverse engineering.

I. INTRODUCTION

For decades the C language has been the language of choice
in developing embedded systems1. Nevertheless develop-
ment in C is affected by problems due to the presence of
preprocessor directives intermingled inside the C code. The
preprocessor complement fundamentally to the expressive-
ness of the C language permitting conditional compilation,
constant definitions, or basic meta-programming support.
However the preprocessor favors also the presence of bugs
[1] and lead to code that is extremely difficult to understand
and analyze. For example, the ifdef directive permits to
implement variability with the goal of obtaining portability
or implementing product lines but it can be easily abused
leading to situations in which the code is hard to understand
and all possible variants are extremely difficult to analyze
[2].

Mbeddr2 [3] is a technology stack based on language
engineering that defines domain specific extensions of C for
embedded programing – e.g., components, state-machines,
physical units. Mbeddr is built on top of the Meta Program-
ming System (MPS) from JetBrains, which is a projectional

1According to the "Transparent Language Popularity Index" it is still the
most popular programming language in general in January 2013.

2http://mbeddr.com

Figure 1. Variability in C is expressed implicitly through the preprocessor.

language workbench. Since the extensions are based on C,
mbeddr can be easily integrated with existing C code. While
most of the syntax and semantics of C is preserved in
mbeddr some notable features were removed to create a new
language easily analyzable. Notably preprocessor directives
are not supported and for many common usages of the
preprocessor, explicit language constructs are provided.

In mbeddr is possible to represent explicitly software
product line concepts [4] with consequent advantages in
terms of analizability (e.g., if feature models are consistent)
[5] and comprehension. To operate with the existing code
base written in C, an importer is needed to first capture
variability expressed using preprocessor directives (like in
Figure 1) and then to re-express it using the specific con-
structs provided by mbeddr (like in Figure 2). As shown in
Figure 2, in mbeddr, feature models and configurations are
captured through domain specific constructs and the linking
of features to code is explicitly represented by annotations on
the statements. The annotations contain an expression with
references to features which determine if the statement will
be included under a particular configuration. These expres-
sions are called presence conditions. Due to the projectional
editing capabilities of MPS, programs can be displayed as
the entire product line or as individual variants. It means
the developer could visualize all possible statements with
their presence conditions, or only the statements that will be
included when a particular configuration it is used. Importing
the C code and variability in mbeddr means to lift the
level of abstraction from token level (the level at which
the preprocessor operates) to a domain specific level where
variability concepts are expressed as first class citizens.

9

REVE 2013 Pre-Proceedings

Figure 2. Variability in mbeddr: on top you see the feature model (left) and
a configuration of that feature model (right). Below there are two projections
of the code: the first one shows all the possible variant, the second one the
variant corresponding to the configuration.

The rest of the paper is organized as follows: we start
describing how variability is represented in C (Sect. II) and
later present an empirical analysis of usages of variability
among large C projects (Sect. III). In Sect. IV we report
about our experience in extracting variability from ChibiOS
source code to mbeddr. Finally we introduce related work
(Sect. V) and draw our conclusions (Sect. VI).

II. HOW VARIABILITY IS EXPRESSED IN C

The preprocessor when it is invoked can receive a set
of parameters, called the initial configuration. The initial
configuration specifies which macros are initially defined
and their initial values. During the preprocessing new macros
can be defined, and the existing ones can change their value
or being undefined. This process is called configuration
processing. Based on the current configuration (the set
of macros being defined and their associated value at a
given moment) declarations and statements are included
or excluded in the code to be compiled. The expressions
determining the inclusion/exclusion of C elements are called
presence conditions. In addition to that, the preprocessor
statements #error and #warning can be used to issue er-
rors and warnings to the user when a particular configuration
is not acceptable or it is deprecated.

Some approaches to extract variability from C (e.g.,
[6]) require to process the initial configuration and rewrite
presence conditions in term of the initial configuration
instead of the current configuration. While this is a sound
solution for analysis, we conjecture that in C important
information is expressed by the combinations of these
two different mechanisms: configuration processing and
presence conditions. The first can be used to specify
derivation rules that determine the values of symbols later
used in presence conditions. Consider the example pre-

sented in Listing 1. First the configuration processing deter-
mines that X_SHOULD_BE_ACTIVATED will be defined only
when the condition defined(FEATURE_A) && (PARAM_B
>0x1010 will have the value true. Subsequently, based on
the fact that X_SHOULD_BE_ACTIVATED is defined or not,
two different statements could be included or excluded (both
of them located inside the function foo). While we could
rewrite the presence conditions to defined(FEATURE_A)
&& (PARAM_B>0x1010) and discard all the configuration
processing we think that this would cause a loss of infor-
mation which could be useful while maintaining the system.
#if defined(FEATURE_A) && (PARAM_B>0x1010)
#define X_SHOULD_BE_ACTIVATED
#endif
void foo()
{
#ifdef X_SHOULD_BE_ACTIVATED
invoke_x_init();

#endif
...

#ifdef X_SHOULD_BE_ACTIVATED
invoke_x_release();

#endif
}

Listing 1. Example of C and preprocessor code containing both
configuration processing and presence conditions

III. EMPIRICAL ANALYSIS OF VARIABILITY IN LARGE C
PROJECTS

To lift the variability information in mbeddr, we need to
understand how is it expressed in large C programs, this
is the goal of the analysis introduced in this section. In
particular we want to investigate if preprocessor directives
in the context of large projects are used in a disciplined way
to represent variability. If that is the case we could identify
usage patterns of the preprocessor that cover the majority
of cases in the practice and exploit them in interpreting
variability.

A. Research questions

Specifically, we aim to answer the following questions:
RQ1) Which are the typical building blocks in presence

conditions? This is important in order to understand which
kind of expressions we need to support in the higher level
configuration language.

RQ2) Which changes (re- #defines and #undefs) are
operated on a defined symbol? Depending on changes upon
defined symbols, defines can be lifted (or not) as constant
configuration values.

RQ3) Are #error and #warning used in practice? If they
are, it could be possible to extract feature model constraints
from them.

B. Analysis approach

In this section we present the general approach we adopted
to answer our research questions. We present the projects we
chose to analyze (III-B1), which information we extracted

10

REVE 2013 Pre-Proceedings

from source files and how (III-B2), how we modelled
variation points (III-B3).

1) Projects: To perform our analysis we selected estab-
lished large projects from different domains. They are:
• Apache OpenOffice: it is a suite of six personal produc-
tivity applications. It is ported on Windows, Solaris, Linux,
Macintosh and FreeBSD. It derives from StarOffice, which
was developed since 1984.
• Linux: Linux is an OS kernel developed since 1991. It is
arguably one of the existing projects which is more portable
being available on more than 20 architectures.
• Mozilla: Mozilla is a suite of different projects including
the Firefox browser for desktop and mobile systems and
the Thunderbird e-mail client. It was created by Netscape
in 1998.
• Quake: it is a videogame released during 1996. It runs on
DOS, Macintosh, Sega Saturn, Nintendo 64, Amiga OS.
• VideoLAN: It is a multimedia player, supporting a large
variety of audio and video formats. It has been ported to
Microsoft Windows, Mac OS X, Linux, BeOS, Syllable,
BSD, MorphOS, Solaris and Sharp Zaurus. The first release
is dated 2001.
Some data about the dimension of projects chosen is

reported in Table I. We chose these projects because they
are multi-platform projects, from different domains and they
are written mainly in C or other languages sharing the same
preprocessor. In particular Apache OpenOffice, Mozilla and
VideoLAN contain also Objective-C and C++ files. We
considered more than 73.000 files with a total of more than
2.1 millions of preprocessor statements.

2) Information extraction: We focus on the define
statements because they are used to implement configuration
processing and on the ifdef, ifndef, if, elif and endif
statements because they can be used to express presence
conditions. We excluded from our analysis statements that,
while being of one of the previous types, were not used to
express variability. To do that we built for each file a model
of the information that are relevant to the preprocessor. We
call this model the preprocessor model.

Preprocessor model: A preprocessor model is an or-
dered list of the elements contained in a source file. Possible
elements are: preprocessor statements, blank lines, comment
lines3 and code lines. Preprocessor statements are recognized
from lines not contained in comments which starts with the
‘#’ symbol. They can span across multiple lines when a
line is terminated with the ‘\’ character. Comment lines are
lines containing whitespaces and comments, blank lines are
lines composed only by whitespaces and not included in a
multi-line comment. Finally code lines are lines containing
some code (they can also include comments). Note that

3Comment lines were included in the model because as future work we
aim to associate comments to preprocessor statements (based on adjacency)
and import also them.

while not parsing the C/C++/Objective-C code the parser
have still to be able to handle correctly string and char
literals to recognize comments. Data about the number of
lines contained in each project are reported in Table I.

Parsing preprocessor expressions: In addition to clas-
sify the lines, we parsed the expressions contained in pre-
processor statements and inserted them in the preprocessor
model. In particular we calculated the value of the condi-
tions associated to preprocessor statements ifdef, ifndef,
if and elif and the expressions specified by define
statements. While statements ifdef, ifndef can express
only simple presence conditions (based on the presence
or absence of one single configuration symbol), if and
elif can specify very complex expressions. To parse those
complex expressions we used the grammar presented in
Listing 1 (whitespaces and comments were ignored, includ-
ing the backslash followed by a newline, which is used
inside preprocessort statements to continue on the next line).
Our parser implementation takes in account the precedence
between operators.

〈expression〉 ::= ‘(’ 〈expression〉 ‘)’
| 〈define〉
| 〈flag_value〉
| 〈logical_binary_op〉
| 〈comparison_op〉
| 〈number_literal〉
| 〈char_literal〉
| 〈math_op〉
| 〈bitwise_binary_op〉
| 〈logical_not〉
| 〈bitwise_not〉
| 〈macro_function_call〉

〈define〉 ::= ‘defined’ ‘(’ 〈identifier〉 ‘)’
| ‘defined’ 〈identifier〉

〈flag_value〉 ::= 〈identifier〉
〈identifier〉 ::= +[_a-zA-Z][_a-zA-Z0-9]*
〈logical_binary_op〉 ::= 〈expression〉 (‘&&’|‘||’) 〈expression〉
〈comparison_expression〉 ::= 〈expression〉 (‘<=’|‘>=’|‘>’|‘<’|‘==’|‘!=’) 〈expression〉
〈number_literal〉 ::= ...
〈char_literal〉 ::= ...
〈bitwise_binary_op〉 ::= 〈expression〉 (‘«’|‘»’|‘&’|‘|’) 〈expression〉
〈math_op〉 ::= 〈expression〉 (‘+’|‘-’|‘*’|‘/’|‘%’|‘^’) 〈expression〉
〈logical_not〉 ::= ‘!’ 〈expression〉
〈bitwise_not〉 ::= ‘~’ 〈expression〉
〈macro_function_call〉 ::= 〈identifier〉 ‘(’ (〈expression〉 (‘,’ 〈expression〉)*)? ‘)’

Grammar 1. Grammar used to parse presence conditions. Definitions of
literals are omitted.

Using this grammar we were able to parse correctly a
large majority of the conditions expressed: out of more
than 185K expressions analyzed we could not parse only
three. Expressions that could not be parsed are reported
in Listing 2. The same grammar can be used to parse a
portion of the define statements, when valid expressions
are assigned to symbols. In some cases however define can
assign to symbols arbitrary tokens instead of expressions,
for example complete or incomplete statements. This is
not a problem relavant for feature model and configura-

11

REVE 2013 Pre-Proceedings

Description Files Lines
Project Domain Version C C++ Obj-C H Total Blank Comm. Code PP Total
AOO Productivity V. 3.4.1 Linux DEB 158 11,029 51 12,107 23,345 1.2M 1.4M 5.3M 430K 8.2M
Linux OS Vv. 3.6.5 17,448 0 0 14,379 31,827 2.0M 2.2M 9.0M 1.3M 14.5M
Mozilla Web Tag FIREFOX_AURORA_19_BASE 3,118 4,502 180 8,050 15,850 807K 991K 3.7M 326K 5.9M
Quake Gaming Commit bf4ac424ce... 240 0 0 145 385 34K 43K 123K 8K 198K
VideoLAN Multimedia V. 1.3.0 778 255 81 1,311 2,425 97K 110K 426K 45K 678K
Total 21,742 15,786 312 35,992 73,832 4.1M 4.7M 19M 2.1M 29.5M

Table I
SIZE OF THE PROJECTS CONSIDERED. AOO = APACHE OPENOFFICE, H = HEADER, COMM. = COMMENT, PP = PREPROCESSOR.

tion extraction because symbols with syntactic content are
not referred inside presence conditions, which have to be
evaluable expressions. Parsing the values of both object-like
and function-like symbols but excluding define with empty
values, expressions parsable by our grammar ranged from
82% (for VideoLAN) to 95% for Linux.
// Mozilla
#if defined(LARGEFILE64_SOURCE) && - \

_LARGEFILE64_SOURCE - -1 == 1
#if -_LARGEFILE64_SOURCE - -1 == 1
// Apache OpenOffice
#if NFWORK < (NAM$C_MAXRSS + 1)

Listing 2. All the expressions not parsed by our grammar

Preprocessor usages excluded: We used the prepro-
cessor model to identify the preprocessor statements that
were not related to variability. We defined two patterns to
be searched in the model, ignoring blank and comment lines.
In particular we excluded:
• Double inclusion guards protecting modules: we recog-
nized them when a ifndef (or an if with an expression
of type !defined(SYMBOL)) was at the very beginning
of the file, immediately followed by a define, which: i)
defined the same symbol used by the previous statement,
ii) had no value specified. Finally a endif had to be the
last element of the file. When recognizing this pattern we
ignored the three preprocessor statements involved. This
pattern was recognized in most of header files. It is used to
prevent an accidental double inclusion of the same header
file.
• Redefinition guards: we recognized them when a
ifndef (or an if with an expression of type
!defined(SYMBOL)) was followed by a define which
defined the same symbol. This line had to be followed by an
endif. When recognized the first and the third statements
were excluded, while the second was marked as a guarded
redefinition. Redefinition guards are often used to avoid
warnings from the compiler.
3) Calculate conditions of variation points: As we dis-

cussed in Section II if, ifdef and ifndef can be used to
define presence conditions. These directives open constructs
which are terminated by an endif and can contain one
else clause and any number of elif clauses. Each of these
constructs individuate one or more portions of codes, which
can contain other preprocessor statements or C elements. It
is possible to insert other conditional constructs inside these

portions, i.e., it is possible to have annidated conditional con-
structs. The portions of code individuate by the constructs
are classified in three kinds:
• Then block: this is the area between the the if, ifdef or
ifndef opening the construct and the first among elif,
else or the endif which are parts of the same construct
(i.e., we do not consider elif or else or the endif of
annidated constructs).
• Else block: this is the area between the else and the
endif closing the construct.
• Elif block: this is the area between the elif and the next
elif, the else or the endif block of the same construct.

We map each if / ifdef / ifndef construct to a Variation
point and each of its block to a Variation point block.

For each Variation point block a specificCondition and a
complexiveCondition can be calculated. The specificCondi-
tion of a ThenBlock is just obtained from the expression
following the if, ifdef or ifndef statement. In the case
of the ElifBlock it is composed through a logical and:
i) the condition of the corresponding ThenBlock negated,
ii) the condition of all the preceding ElifBlocks negated,
iii) the condition created from the expression following
the specific elif. In the case of ElseBlock it is created
composing through a logical and: i) the condition of the
corresponding ThenBlock negated, ii) the condition of all the
ElifBlocks negated. The complexiveCondition corresponds to
the specificCondition if the block is part of a VariationPoint
which is not annidated, otherwise it corresponds to the com-
plexiveCondition of the block containing the VariationPoint
in logical and with the specificCondition of the block.

C. Results and discussion

In this subsection we present how we addressed each RQ
and the corresponding results (III-C1, III-C2, III-C3). Later
we discuss our findings (III-C4). All the analysis do not
consider the statements excluded for the reasons explained
in Par. III-B2.

1) Addressing RQ1: Presence conditions: To answer this
question we analyzed all the expressions from if, ifdef,
ifndef and elif statements. For each type of expression
(Identifier, NumberLiteral, ComparisonOp., etc.) we counted
in how many of the expressions considered it was used. To
do that we looked at the type of the expression itself and
the type of all its sub-expressions, recursively.

12

REVE 2013 Pre-Proceedings

Results: We report frequencies of the different types of
expression in Table II. We can see that, as easily predictable,
identifiers are referred in most of the presence conditions
(84.6%-98.1%). Presence conditions which instead do not
refer to identifiers or macro function calls are constants:
they are always true or false, independently of the current
configuration. Many of the expressions not referring to
identifiers are composed by only one costant, either ‘0’
(false) or ‘1’ (true). An if having as expression ‘0’ cause
the exclusion of all the elements contained in the ThenBlock.
An if having as expression ‘1’ leaves always untouched
the elements in the ThenBlock. The remaining expressions
without identifiers could still have a documentation role,
showing the reasoning process bringing to include or exclude
a particular set of statements. The most common operations
are logical operations (!, &&, ||) which are present in many
presence conditions (between 1/5 to 2/3 of the expressions
considered). Comparison operations (<,>,<=,>=,==,!= are
also relevant as well as number literals. Math (+,-,*,/,%,∧)
and bitwise operations («,»,&,|,) are very infrequent (they
appear in less than 1% of the presence conditions). Quite
infrequent are also macro function calls which are not used
at all in one of the projects considered and seem to be
marginally relevant only in VideoLAN and Linux (being
contained in slightly more than 1% of all examined presence
conditions). Observing the nature of macro functions used in
presence conditions we noticed that quite frequently they are
just implemented using stringifications4 to compose different
tokens creating a new identifier.

2) Addressing RQ2: Configuration processing: Techni-
cally the value of a macro can vary during the execution
of the preprocessing. A scenario like the one presented in
Listing 3 is therefore possible. In this example two functions
(foo_a and foo_b) have the same presence condition (XYZ
have to be defined) but because of the changes in the
definition of XYZ (initially defined and then undefined)
foo_a will be included while foo_b will be not.
#define XYZ
#ifdef XYZ
void foo_a(){};
#endif
#undef XYZ
#ifdef XYZ
void foo_b(){};
#endif

Listing 3. Example of configuration processing varying the value of a
macro

The designers of Mbedder considered these consequences
of the configuration processing confusing and do not support
it in their variant of C; they instead consider configuration
values to be constant.

While in general preprocessing symbols can be used in
very different ways, we examined how frequently they are

4See http://gcc.gnu.org/onlinedocs/cpp/Stringification.html for an expla-
nation of stringification.

used as simple constants. We found three cases in which
they behave as simple constants. To individuate instances
of these cases we analyzed how a particular symbol was
defined, re-defined or undefined in the scope of a complete
project (because the preprocessor do not implement local
scopes). One condition applies to all these cases: the symbol
considered should be never undefined, because it would
mean to limit its scope, while we are looking for symbols
behaving as constants which are available to the whole
system. The cases considered are:

• Symbols defined once: symbols that are defined just once
in the scope of the project considered.
• Symbols re-defined always to the same value: symbols
that are defined two or more times but they are assigned
always exactly the same expression (possibly the empty
value, meaning that they are defined but they have not an
associated value).
• Symbols re-defined under different conditions: symbols
which are defined two or more times, but every time they
are defined under a particular condition they are defined to
the same value.

To be able to recognize the symbols re-defined under
different conditions we had to be able to calculate the
presence condition under which a particular definition would
be used. Consider the example given in Listing 4. In that
example the same symbol (VAL) could assume different
values. The value 1 is assumed only when the condition
defined(A) && defined(B) is satisfied, the value 2 is
assumed when the condition defined(C) || defined(D)
is satisfied, otherwise the symbol remains undefined. To
calculate the presence condition of a given definition is
not trivial because if, ifdef and ifndef constructs can
be annidated and also the role of elif and else have
to be considered. To this operation we used the technique
presented in Sub-subsection III-B3.

#if defined(A) && defined(B)
#define VAL 1
#endif
#if defined(C) || defined(D)
#define VAL 2
#endif

Listing 4. Example of definitions under different presence conditions

Results: Table III reports some data about the number
of definitions and undefinitions considered and the number
of symbols involved. It is possible to notice that the number
of symbols undefined is many times smaller than the number
of symbols defined. A symbol can be undefined for different
reasons. One reason is to avoid compiler warnings: a symbol
already defined can be undefined immediately before a
statement defining it again. Another reason is to mimic
the concept of scope: by undefining the symbol we are
guaranteed previous definitions preceding the undefinition
will not affect the code following the undefinition.

13

REVE 2013 Pre-Proceedings

Expr. Type AOO Linux Mozilla Quake VideoLAN Range
Identifier reference 98.1 95.8 97.1 84.6 93.4 84.6-98.1
Number literal 7.9 7.0 6.5 15.7 10.0 6.5-15.7
Logical op. 66.3 17.9 22.3 28.3 20.9 20.9-66.3
Comparison op. 6.3 3.4 4.0 0.3 3.4 0.3-6.3
Math op. 0.04 0.1 0.1 0 0.3 0-0.3
Bitwise op. 0.01 0.5 0.01 0 0.3 0-0.5
Macro function call 0.01 1.3 0.2 0 1.5 0-1.5
‘0’ 1.8 3.5 2.7 14.6 5.5 1.8-14.6
‘1’ 0.2 0.5 0.2 0.8 0.5 0.2-0.8

Table II
PERCENTAGE OF PRESENCE CONDITIONS CONTAINING THE GIVEN TYPE OF EXPRESSION ACROSS THE DIFFERENT PROJECTS CONSIDERED. FOR THE

EXPRESSIONS 0 AND 1 IT IS INSTEAD THE NUMBER OF EXPRESSIONS CORRESPONDING EXACTLY TO 0 OR 1. LAST COLUMN REPORT THE RANGE (THE
SPACE DETERMINED BY THE MINIMUM AND MAXIMUM VALUES AMONG ALL PROJECTS).

Definitions Undefinitions Errors and warnings
Project Sym Def D1 D2 D3 D4+ Sym Undef Error Warning Perc.
AOO 44K 64K 69.9% 25.4% 1.5% 3.1% 0.6K 1.3K 195 0 0.05%
Linux 656K 787K 90.5% 6.6% 1.4% 1.5% 1.9K 3.3K 735 76 0.07%
Mozilla 51K 70K 83.1% 10.9% 2.0% 4.0% 2.0K 3.6K 694 39 0.26%
Quake 3K 5K 72.5% 23.5% 1.9% 2.0% 9 59 0 0 0%
VideoLAN 13K 15K 92.7% 5.5% 0.7% 1.1% 0.5K 0.6K 31 67 0.26%

Table III
DATA ABOUT USAGE OF PRESENCE CONDITIONS AND USAGE OF ERROR AND WARNING DIRECTIVES. DEFINITIONS/SYM = NUMBER OF SYMBOLS

DEFINED AT LEAST ONCE, DEF = NUMBER OF define, D1 = RATIO OF SYMBOLS DEFINED ONCE, D4+ = RATIO OF SYMBOLS DEFINED FOUR OR MORE
TIMES, UNDEFINITIONS/SYM = NUMBER OF SYMBOLS UNDEFINED AT LEAST ONCE, UNDEF = NUMBER OF undef. PERC. = PERCENTAGE OF ERROR

AND WARNING DIRECTIVES AMONG ALL THE PREPROCESSOR STATEMENTS.

In general preprocessing symbols can be re-defined or
undefined multiple times. For example in the Quake project
the symbol INTERFACE is defined or undefined 46 times,
LOG is defined or undefined 223 times in Mozilla and
pr_fmt is defined or undefined 995 times in Linux. This
happens for a variety of reasons. In some cases different
definitions of the same symbols are contained in header files
which are alternatively included in the compiled system. In
other cases different definitions of the symbols are used in
separated subsystems, so they just happen to have the same
name but they are intended as different values to be used in
different contexts.

In table IV we report the frequencies of the particular
cases described in which we can equiparate symbols to
constants. As we can see in all the projects considered the
percentage of symbols that are covered by these special
cases ranges between 95% and 99%. It means it is feasible
to automatic lift a large portion of the symbols, while a
minority of them have to be manually converted.

3) Addressing RQ3: Error and warning directives: We
simply counted the number of error and warning direc-
tives used.

Results: Data is available in Table III. Only one project
(Quake) do not use them at all. In general we can notice that
error directives are more used than warning directives;
this is true for 3 out of 4 projects, while in the VideoLAN
project warning directive are used twice as much as error
directives. In general these directives constituted between
0.05% and 0.26% of all the preprocessor statements, if they
are used at all.

4) Discussion: From our results we can tell that:

• RQ1 Presence conditions can contain a range set of
different expressions. However mathematical and bitwise
operations are rarely used, as well as macro function calls,
so they have not to be necessarily supported in mbeddr:
the expressions not supported (if found in the projects the
user want to import) can be manually addressed.
• RQ2 Most of preprocessing symbols are used in practice
as global constants, being never redefined to a different
value under the same presence condition and being never
undefined, therefore our simplifications appear to be rea-
sonable and would permit to lift in mbeddr most of the
symbols.
• RQ3 error and warning directives are not necessarily
used by all projects. Therefore in some cases constraints
between features have to be extrapolated from other infor-
mation sources or be manually described.

These results suggest it is feasible to extract and lift
automatically a large portion of the variability information
from C projects, while limited human intervention can be
still needed.

IV. EXPERIENCE WITH IMPORTING CHIBIOS INTO
MBEDDR

ChibiOS is a real-time operating systems supporting 14 core
architectures, different compilers and different platforms. We
chose it for our case study because it is a well written, com-
plex embedded system with very high usage of variability
to support portability. In our case study we used the code of
version 2.5.1. The system is composed from many modules:

14

REVE 2013 Pre-Proceedings

Expr. Type AOO Linux Mozilla Quake VideoLAN Range
single definition 69% 90% 80% 72% 90% 69%-90%
re-definition to the same value 23% 6% 7% 24% 2% 2%-24%
definitions under different conditions 2% 2% 9% 2% 4% 2%-9%
total 94.8% 97.9% 96.3% 98.6% 95.1% 94.8%-98.6%

Table IV
SPECIAL CASES IN WHICH MACROS CAN BE LIFTED TO HIGHER LEVEL CONCEPTS.

• boards: it contains specific code for 35 boards and a board
simulator,
• demos: it contains 42 demos for different boards and com-
pilers combinations (some of the demos are then divided
in sub-demos),
• os: the directory containing the core of the system,
• test and testhal: contain source code for testing the system
under different configurations.
• tools: tools which complement ChibiOS.

Given this organization we segmented the global system
in sub-systems. In this section we first discuss how we
extracted a feature model from the OS Kernel module
(IV-A), then how we extracted a configuration for that
feature model from the subsystem containing the code of
a demo for a particular platform (IV-B). Finally we discuss
the experience (IV-C).

A. The OS Kernel module

We start our analysis from the os/kernel subsystem be-
cause it contains code that have to work with all the
architectures, boards and compilers supported by the sys-
tem. Thereby, this is the module where portability is more
important. Examining the code we noticed that most of the
presence conditions have the shape ‘a-sub-expression’
|| defined(__DOXYGEN__). This has the goal of making
visible pieces of code to a tool used to produce documen-
tation. Because this symbol is not related to variability we
substituted it with the value ‘0’ (which evaluates to false for
the preprocessor) and simplified the expressions containing
it (for example defined(A) || defined(__DOXYGEN__)
would become defined(A)). This permits to identify as
redefinition guards snippets as the one presented in Listing
5.

#if defined(A) || defined(__DOXYGEN__)
#define A 123
#endif

Listing 5. A redefinition guard polluted by the __DOXYGEN__ symbol

We parsed correctly all the 41 files (18 C files and 23
header files). Excluding the statements described in Par.
III-B2 we obtained 246 presence conditions expressions (all
parsed correctly) and 233 definitions (both of symbols with
object-like or function-like symbols). We examined which
symbols were used in presence conditions: they were 54,
none of them being a function-like symbol. We then exam-
ined all the definitions of these symbols in the subsystem
to iteratively look for symbols that were indirectly referred

by presence conditions. We found only the symbols TRUE
and FALSE to be indirectly referred by presence conditions.
Out of the total 56 symbols used (directly or indirectly)
only 3 symbols were defined internally at the module:
CH_DBG_ENABLED, TRUE and FALSE. Being the other 53
symbols never defined in the subsystem we know they have
to be defined in the modules “using” the kernel module. For
this reason we lifted them as features. We therefore created
a feature model containing these 53 features.

The three symbols used in presence conditions and
defined in the subsystem were instead imported as derived
features. For TRUE and FALSE there was just one definition
which was always valid (i.e., the definitions were not
inserted in a variation point). CH_DBG_ENABLED instead
had two definitions. The first one under the condition
CH_DBG_ENABLE_ASSERTS || CH_DBG_ENABLE_CHECKS
|| CH_DBG_ENABLE_STACK_CHECK ||
CH_DBG_SYSTEM_STATE_CHECK, the second one under
the opposite condition. In the first case it was defined to
TRUE, in the second one to FALSE. We could import it
automatically because the different conditions under which
it was defined were disjoint, otherwise we would have
needed human judgement to import it.

To complete the feature model we imported the extra con-
straints from warning and error statements. In the subsystem
analyzed there were 6 errors statements and 0 warning state-
ments. For each error we calculated the presence conditions
and extracted the message.

B. Module demos/ARMCM3-STM32F103ZG-FATFS

The code of this module contains a definition for 31 out
of the 53 features present in the feature model extracted by
the OS Kernel. Other features could remain undefined or be
defined in other modules which are compiled together with
this one to produce the final demo: for example the module
containing the board-specific code or the code specific for
the ARM architecture. All the definitions of these features
have a presence condition equals to true. It means they are
always valid. The features have assigned in 28 cases either
the value TRUE or FALSE. Note that those macros assume
the value 1 or 0 (the preprocessor or the C language have
not a boolean type). We decided to import them as booleans
(which is supported by mbeddr-C) instead of simple integers.
One of the remaining three features is defined without
providing a value, while the other two assume the numerical
values 0 and 20.

15

REVE 2013 Pre-Proceedings

C. Discussion

ChibiOS is a system written extremely well and the usage
of the preprocessor is very disciplinated. Because of that we
were able to extract without human intervention a feature
model and a configuration model from two of the modules of
the whole system. We could extract some of the constraints
of the feature model from error directives but most of them
had to be manually specified. The type of values that can
be associated to features was obtained indirectly, looking at
how the symbol was used in the configuration and updating
the feature model.

V. RELATED WORK

We classify the related work along four directions:
Substitute preprocessor directives Kumar et al. [7]

discuss how to substitute some usages of preprocessor
directives with features of the new standard of C++ (C++11).
ASTEC [8] is a variant of C with support to syntactic
macros. McCloskey et al. explain how they analyzed C code
and refactor the preprocessor directives using these exten-
sions. Both approaches target languages with no explicit
support for variability. ASTEC in particular lift the level
of abstraction from token to syntactic level.

Representing variability There are development tools
which provide a more intuitive representation of variability
concerns through the usage of background colors (e.g., [9]).
Our work could be integrated with such tools.

Variability information extraction Some approaches
aims to provide tools able to analyze the preprocessor direc-
tives and individuate possible bugs. Among these approaches
one of the most relevant is TypeChef [6]. While the goal
of these approaches is to achieve maximum accuracy and
generality, our approach is to capture the intentions as
expressed in the code.

Empirical study about preprocessor usage On this topic
it is very relevant the analysis presented by Ernst et al.
[10]. While their analysis is very deep and interesting, they
considered less lines of code that we did and they did not
address large projects as we did. The goal of their analysis
is more general, while we focus specifically on variability.
However we can confirm one of their findings: they reported
that 86% of preprocessor symbols were defined just once
among the 26 systems they considered. We found this value
to range between 69% and 90%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we examined how in practice large, long
established projects use preprocessor directives to represent
variability. Results suggest that this category of projects
are quite disciplined in using them, as consequence idioms
and patterns can be identified and exploited to extract a
large part of the variability information present in the code
using simple heuristics. Our approach aims to preserve the
readability and the original intent expressed in the code:

while it has some theoretical limitations, it seems to be
applicable in practice, as suggested also by the results of
our experience with ChibiOS.

Our approach have still to be improved and completed:
we have to use the variability information extracted to
decorate the statements with presence conditions. Possible
improvements could include attributing automatically a type
to the extracted features. As future work we plan to perform
a case study on a project involving industrial partners.

ACKNOWLEDGMENTS
We would like to thank all the contributors to the mbeddr project at Itemis and

Fortiss for their support, Markus Völter for his suggestions and Christian Kästner for
the useful discussions we had with him. We would like also to thank DAAD that
partially financed this work. Mbeddr has been supported by the German BMBF, FKZ
01/S11014.

REFERENCES

[1] K. Nie and L. Zhang, “On the relationship between
preprocessor-based software variability and software defects,”
in High-Assurance Systems Engineering (HASE), 13th Int.
Symp. on, 2011, pp. 178 –179.

[2] H. Spencer and G. Collyer, “#ifdef considered harmful, or
portability experience with c news,” in Proc. of the Summer
1992 USENIX Conf., San Antionio, Texas, 1992, pp. 185–198.

[3] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr:
an extensible c-based programming language and ide for
embedded systems,” in Proc. of the 3rd conf. on Systems,
programming, and applications: software for humanity, ser.
SPLASH ’12. New York, NY, USA: ACM, 2012, pp. 121–
140.

[4] M. Voelter and E. Visser, “Product line engineering using
domain-specific languages,” in Software Product Line Con-
ference (SPLC), 15th Int., 2011, pp. 70 –79.

[5] D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb, “Language
Engineering as Enabler for Incrementally Defined Formal
Analyses,” in FORMSERA’12, 2012.

[6] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef:
toward type checking #ifdef variability in c,” in Proc. of the
2nd Int. Workshop on Feature-Oriented Software Develop-
ment, ser. FOSD ’10. New York, NY, USA: ACM, 2010,
pp. 25–32.

[7] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating c++
programs through demacrofication,” in Proc. of the 28th IEEE
International Conference on Software Maintenance, 2012.

[8] B. McCloskey and E. Brewer, “Astec: a new approach to
refactoring c,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,
pp. 21–30, 2005.

[9] J. Siegmund, N. Siegmund, J. Fruth, S. Kuhlmann,
J. Dittmann, and G. Saake, “Program comprehension in
preprocessor-based software,” in Computer Safety, Reliability,
and Security, ser. Lect. Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7613, pp. 517–528.

[10] M. Ernst, G. Badros, and D. Notkin, “An empirical analysis
of c preprocessor use,” Software Engineering, IEEE Transac-
tions on, vol. 28, no. 12, pp. 1146 – 1170, 2002.

16

REVE 2013 Pre-Proceedings

Identifying Traceability Links between Product Variants and Their Features

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony and Ra’fat Al-msie’deen
UMR CNRS 5506, LIRMM

Université Montpellier 2 Sciences et Techniques

Place Eugène Bataillon, Montpellier, France

{Eyalsalman, Seriai, Dony, Al-msiedeen}@lirmm.fr

Abstract— usually a software product line (SPL) is developed

by exploiting available resources of a set of software variants

that deem similar. In order to reengineer such variants that

are developed by ad-hoc reuse into software product line that

are developed by systematic reuse, it is necessary to identify

traceability links between features and source code in a

collection of product variants. Information retrieval (IR)

methods are used widely to achieve this goal. These methods

handle product variants as singular entities. However when

product variants are considered together, we can get additional

information that improves IR results. This paper proposes an

approach to improve IR results when they are applied to

identify traceability links in a collection of product variants.

The novelty of our approach is that we exploit commonality

and variability across product variants at feature and

implementation levels to apply IR methods in efficient way.

The obtained results proved that our approach significantly

outperforms direct applying IR technique in conventional way

in term of precision and recall metrics.

Keywords- Traceability links, features, source code, object

oriented, variability, software product line, latent semantic

indexing, product variants.

I. INTRODUCTION

SPL aims to reduce development cost and time by
producing a family of software products at a time. According
to software engineering institute (SEI) definition, a SPL is
“a set of software-intensive systems sharing a common,
managed set of features that satisfies the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [3].
Usually SPL is developed by exploiting available resources
of a set of software variants that deem similar to build SPL
core assets. Such resource includes: source code, design
documents, features and so on [8].

Software product variants represent a set of similar
products that are developed by ad-hoc reuse techniques such
as “clone-and-own”. These variants share some features and
also differ in others to meet specific needs of customers in a
particular domain. For example, Wingsoft Financial
Management System (WFMS) was developed for Fudan
University and then evolved many times so that all evolved
WFMS systems have been used in over 100 universities in
China [5].

At first glance, clone-and-own technique represents an
easy and fast reuse mechanism so that it provides the ability
to start from existing already tested code and then making
required modifications to produce a new variant. However
when number of product variants and features grows, such

ad-hoc reuse technique causes critical problems such as:
maintaining efforts will be increased because we should
maintain each variant separately from others, and sharing
features in new products will be more complicated. When
these problems accumulate, it is necessary reengineering
product variants into a SPL for systematic reuse.

The first step in this reengineering process is to identify
source code elements that implement a particular feature
across product variants. This mapping between features and
corresponding source code elements is known as traceability
links.

The identified traceability links can be used to facilitate
products derivation process from SPL core assets, find
dependency between features, facilitate program
comprehension process and also no maintenance task can be
completed without identifying source code elements that are
relevant to the task at hand[11].

Numerous approaches that are based on IR techniques
have been proposed to identify links between source code
and features [6]. These approaches handle product variants
as singular entities (one product at a time). However when
product variants are considered together, we can get
additional information that can help to improve IR
techniques results. This information is about commonality
and variability across product variants at feature and
implementation levels.

In this paper, we propose new approach to identify
traceability links between object oriented source code of a
set of product variants and given features of these variants
using latent semantic indexing (LSI). Our approach aims to
divide LSI search space at feature and implementation levels
for each variant into two partitions (or subspaces): common
and variable partitions. At features level, common partition
represents a set of features that are shared by all variants
(common features) while other features in the same variant
represent variable partition (optional features). At
implementation level, common partition refers to source
code elements that realize common features while other
implementation in the same variant represents variable
partition that realize optional features. Source code elements
implementing common features are called common source
code elements while source code elements implementing
optional features are called variable source code elements.
The intuition behind this dividing process is to isolate
common features and their corresponding code in each
product variant. Consequently, we can also isolate optional
features and their corresponding code in each product
variant. The experimental results show that our approach

17

REVE 2013 Pre-Proceedings

gives promised results comparing with applying LSI in
conventional way (a variant as atomic chunk).

The remainder of this paper is organized as follows.
Section 2 presents background and related work. Section 3
presents our approach. Section 4 shows experimental results
and evaluation. Finally, Section 5 presents conclusion and
future work.

II. BACKGROUND AND RELATED WORKS

This section describes LSI and traceability links in
software engineering, and discusses related works.

A. Traceability Links

Traceability is the ability to describe and follow the life
cycle of an artifact (requirements, design models, source
code, etc.) created during the software life cycle in both
forward and backward directions [13]. Traceability relations
can refer to overlap, satisfiability, dependency, evolution,
generalization/refinement, conflict or rationalization
associations between various software artifacts. In general,
traceability relations can be classified as horizontal or
vertical relations. The former type refers to relation among
artifacts at different levels of abstraction (e.g. between
requirements and design) and the latter type refers to relation
among artifacts at the same level of abstraction (e.g. among
related requirements) [14].

Identifying traceability links among software artifacts at
different levels of abstraction of product variants provide
important information about development and maintenance a
SPL. Such traceability is useful to derive concrete products
from SPL core assets.

B. LSI in Software Engineering

Several IR methods exist such as: probabilistic method
(PM), vector space method (VSM) and LSI [15]. All of
these methods assume that all software artifacts are in textual
format. In each method, one type of software artifact is
treated as query and another type of artifact is treated as
document. IR methods rank these documents against queries
by extracting information about the occurrences of terms
within them. The extracted information is used to find
similarity between queries and documents. In the case of
recovering traceability links, this similarity is exploited to
recover traceability links that might exist between two
artifacts, one of them is used as query.

LSI is an advanced IR method. The heart of LSI is
singular value decomposition technique (SVD). This
technique is used to mitigate noise introduced by stop words
like (the, an, above, etc.) and to overcome two classic
problems arising in natural languages processing: synonymy
and polysemy. The intuition behind SVD is rather complex
to be presented here and see [16] for further details.

We chose LSI because it already has positive results to
address maintenance tasks such as concept location [15],
detection in software [17], and recovery of traceability links
between source code and documentation [1].

C. Related Works

A comprehensive survey about techniques that have been
proposed to identify source code elements relevant to a
feature can be found in [9]. These techniques depend on
static, dynamic or textual analysis, or a combination of these.
Static analysis examines structural information such as
control or data flow. Dynamic analysis relies on execution
trace according to scenarios related to specific feature(s).
Finally, textual techniques examine words in source code
using IR methods. All these techniques identify traceability
links between source code and corresponding features in a
single product while our approach considers a set of product
variants. The following works represent the most relevant
works to us.

Ghanam et al. [4] have proposed a method to keep

traceability links between feature model (FM) of a SPL and

source code up-to-date. When SPL evolves, the traceability

links become broken or outdated due to evolution at features

and implementation levels. Their method is based on

executable acceptance tests (EAT). EAT refers to English-

like specifications (such as: scenario and story tests).These

EATs represent the specifications of a given feature and can

be executed against the system to test the correctness of its

behavior. Their approach starts from already existing links

to make them up to date while our approach is differ from

this work where we start from scratch and assume that no

already existing links.
Rubin et al. [12] focused on locating distinguishing

features of two product variants realized via code cloning.
Distinguishing features mean those features that are present
in one variant and absent in another. Their approach relies on
capturing the information about unshared part of the code
between two products. This unshared part can be obtained by
comparing a variant’s source code that has the features of
interest to another one that does not has. The distinguishing
features between to variants reside on this unshared part of
code. Their work aims at isolating source code that
corresponds to distinguishing features and then apply feature
location techniques in efficient way. However, if the number
of distinguishing features is large their approach becomes
infeasible because in this case we map a large number of
features with a large part of code.

III. THE PROPOSED APPROACH

In this section, we describe input data of our approach;

discuss how to divide each variant at feature and

implementation levels into two partitions and how to apply

LSI for recovering traceability links.

A. An Illustrative Example

Consider a collection of four variants of text editor

system as shown in table 1 below. The initial product in this

collection is T_Editor_V1.0. It supports just core features

for any text editor such as: open, save and create a file. The

initial product is enhanced to be T_Editor_V1.1 by adding

search and text edit features. T_Editor_V1.2 is another

enhancement of initial product. T_Editor_V2.0 is an

18

REVE 2013 Pre-Proceedings

advanced variant of text editor. It supports all previous

features in addition to replace feature.

B. Input Data

Our approach takes object oriented source code of a set

of product variants and a given set of features of these

variants as input (like table 1). Each feature is identified by

its name and description. Feature description is a natural

language description. This information about feature

represents a domain knowledge that is usually available

from product variants documentation. In our work, feature

description consists of small paragraph or some sentences.

C. Feature versus Object-Oriented Elements

In the literature, there are many definitions of feature. In

this work, we rely on the following definition: a feature is a

prominent or distinctive user-visible aspect, quality, or

characteristic of a software system or systems [19]. We

adhere to the classification given by [18] which

distinguishes three categories of features: firstly, functional

features express the behavior or the way users may interact

with a product. Secondly, interface features express the

product’s conformance to a standard or a subsystem.

Finally, parameter features express enumerable, listable

environmental or non-functional properties. In our work, we

deal with functional aspects of features where functionalities

are grouped together into at a high level of abstraction to

form features.
As there are several ways to implement features [7], we

assume that functional features either common or optional
are implemented at the programming language level. Thus in
an object oriented source code, functional feature can be
implemented by different object oriented building elements
(OOBEs). OOBEs include packages, classes, methods,
attributes, etc. A feature has coarse granularity elements
when its implementation consists of high level building units
such as: packages, classes and interfaces. On the other hand,
a feature is fine-grained when its code is composed by lower
level units, such as methods, attributes, statements. In our
work, we consider that a feature is realized at
implementation level by a set of classes because the class
represents a main building unit in any object oriented
language.

D. Identifying Common and Variable Partitions at Feature

and Implementation Levels For Each Variant

The goal of our approach is to reduce LSI search space as

much as possible at feature and implementation levels. The

underlying intuition behind this goal is to map less features

to less implementation in order to apply LSI in efficient

way. In our previous work published in [22], we deal with

product variants as a collection and divided this collection at

feature and implementation levels into two partitions

(common and variable partitions). At feature level, common

and variable partitions represent common and optional

features across product variants respectively. At

implementation, common and variable partitions implement

common and optional features respectively. During this

current work, we will divide each product variant at feature

and implementation levels into two partitions considering

variability and commonality distribution across product

variants.

Presence or absence a feature in product variant should be

reflected in the implementation by presence or absence

corresponding source code elements. Thus, we proposed an

approach to divide each product variant at feature and

implantation levels into two partitions as follow:

1) At Feature Level

We rely on lexical similarity of feature names and

descriptions to determine common features across product

variants such as core features in our illustrative example

(open, save and create).

Algorithm1: ICFeatures.

Input:features sets of product variants PVF = { PF1,…,PFn}.
Output:common features (Fsn).

1: Fsn := PF1
2: for i := 2 to length [PVF] do
3: Fsn:=Fsn∩ PFi
4: return Fsn

For a set of features of set of product variants, our

approach firstly defines a subset of same name features (Fsn)

according to given above ICFeatures algorithm. ICFeatures

takes as input sets of features of product variants (PVF) and

return common features (Fsn). PVF represents a multiset

data structure where each set corresponds to specific

product variant. For instance, PF1 corresponds to product

variant1 features. Step three compute shared features by

conducting an intersection among all product variants

features.

Table1. Features Set of Four Text Editor Variants.

Product Name Features

T_Editor_V1.0 Core (Open, Save, Create).

T_Editor_V1.1 Core, Search, Edit.

T_Editor_V1.2 Core, Print, Edit.

T_Editor_V2.0 Core, Search, Edit, Replace, Print.

Figure1. Feature-Source code mapping model in product variants.

19

REVE 2013 Pre-Proceedings

A feature may be renamed to response changes in

software environment or the adoption of different

technology [2]. Our approach considers this issue into

account by computing lexical similarity pair-wisely for

those features that don’t have same name based on longest

common subsequence (LCS) of their feature descriptions

[21]. For example, for two features f1 and f2 where f1∈ PF1,

f2∈ PF2 and f1.name ≠ f2.name, if LCS for description of f1

and f2 has the same subsequence terms we can consider f1

and f2 represent the same feature.

By identifying common features across product variants,

the rest features in any variant represent optional features. In

our illustrative example, core features are common features

across product variant while search and edit features

represent optional features in T_Editor_V1.1.

2) At Implementation Level

Our approach analyzes source code of a set of product

variants itself. Source code for each product variant is

decomposed into a set of elementary construction units

(ECU). ECU considers packages and classes. ECU takes the

following format:

ECU = { Package.Name_Class.Name}.

This representation is inspired by the model construction

operations proposed by [20]. Each product variant Pi is

encoded as a set of ECUs, i.e. Pi={ECU1,ECU2,…,ECUn}.

We can note that our ECU can appear any structural

changes at package and class levels. We call these changes

as variations levels in the source code. These variations can

reflect any changes at feature level (e.g. add or remove

features) directly in the implementation level by adding or

removing corresponding OOBEs.

Algorithm2: IC_ECUs

Input:Set of product variants (AllPV) abstracted as ECU.
AllPV = {P1,P2,…,Pn}.
Output:Common ECUs (C_ECUs)

1: C_ECUs := P1
2: for i := 2 to length [AllPV] do
3: C_ECUs:=C_ECUs ∩ Pi
4: return C_ECUs

In order to identify common ECUs shared by all product

variants, we proposed above IC_ECUs algorithm. IC_ECUs

takes as input a set of product variants abstracted as a set of

ECUs and returns common ECUs (common source code

elements) across product variants. Step three compute

shared ECUs by conducting an intersection among all ECUs

of a set of product variants. These shared ECUs implement

common features.

By identifying common ECUs (C_ECUs) across product

variants, the rest ECUs in any variant represent variable

ECUs (V_ ECUs). V_ ECUs represents variable source code

elements. In our illustrative example, if we consider that

T_Editor_V1.0 is implemented by {ECU1, ECU2} and

T_Editor_V1.1 is realized by {ECU1, ECU2, ECU3, ECU4,

ECU5}. Our approach reports that C_ ECUs = {ECU1,

ECU2} while V_ECU = {ECU3, ECU4, ECU5}.

E. Recovering Traceability Links By LSI

Domain knowledge and concepts are recorded in the

source code through identifiers. Thus, our approach uses

LSI for analyzing these elements to identify traceability

links between common features and common source code

elements (classes), and between optional features and

variable source code elements in each product variant. Our

applying of LSI is similar to [1]. It involves building LSI

corpus and queries.

1) Building LSI Corpus

Our approach depends on four steps to process source

code: (1) Identifiers extraction. (2) Tokenization. (3) Tokens

manipulation. (4) Determining document granularity.

Firstly, identifiers extraction needs a parser to extract all

source code information. During our work we used a Java

parser to build abstract syntax tree of the source code that

can be queried to extract required identifiers.

 Secondly, identifiers must be tokenized. We considered

two commonly styles for identifiers: one is the combination

of words using underscore as delimiters (e.g.,

traceability_links); and the other is the combination of

tokens using letter capitalization for separation (e.g.,

TraceabilityLinks). All identifiers that follow these rules

are tokenized into singular tokens (e.g., traceability links

for the above examples).

Thirdly, tokens are manipulated by reducing every token

to its root. For example, take, took and taken are reduced to

the same root take. Finally, we choose each class to be a

separate document. A document contains lines of all

identifier inside a class.

After source code processing, each product variant (P) is

decomposed into a set of documents. These documents

represent LSI corpus.

2) Building Queries

In our approach, LSI uses feature name and description as

query to retrieve classes relevant to a specific feature. Our

approach creates a document for each feature. This

document contains feature name description, and it also is

manipulated likes source code. Our approach extracts tokens

from feature name and description. It uses white space and

punctuation marks as delimiters. Then it reduces every

token to its root.

3) Establishing traceability links

We feed LSI with documents and queries to build topic

model. LSI builds a vector of weights for each document

and query. Each weight represents a probability of

affiliation for a given document and a query to the same

topic. Then, LSI measures the similarity between queries

and documents using cosine similarity. It returns a list of

documents ordered based on their similarity against each

20

REVE 2013 Pre-Proceedings

query. In our work, we consider the most widely used

threshold for cosine similarity that equals to 0.70 [1], i.e.,

documents that will be retrieved have a similarity with a

query greater than or equal to the threshold value.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we show the case study used for the

evaluation of our approach, present the evaluation metrics

and discuss the experimental results.

A. Case Study

We have applied our approach on a set of product

variants from ArgoUML modelling tool. These variants

represent members of ArgoUML-SPL
1
 published in [10].

We generated four variants from ArgoUML-SPL as shown

in table 2 below.

The four variants provide two common features (class

diagram and cognitive support features) and seven optional

features (state, collaboration, usecase, activity, deployment

and sequence diagram features). The advantage of

ArgoUML-SPL is that it implements features at different

levels where features are implemented at package, class,

method and attribute levels. Preprocessor directives have

been used to annotate the source code elements associated to

each feature. This pre-compilation process allows us to

establish the truth links (real implementation for each

feature) to evaluate the effectiveness of our approach.

Table 2: Set of ArgoUML-SPL members.

Products Features

Product1 Class, cognitive, sequence, usecase, state,

activity.

Product2 Class, cognitive, sequence, usecase,

collaboration, activity.

Product3 Class, cognitive, collaboration, deployment,

state.

Product4 Class, cognitive, state, activity,

collaboration, deployment.

B. Evaluation Measures

We have used two measures to evaluate our approach:

Precision and Recall. These measures are commonly used

to evaluate IR methods [1].

1) Precision

Precision describes the precision of retrieved traceability

links for a given feature. Precision is the percentage of

correctly retrieved links (classes) to the total number of

retrieved links. Equation 1 below represents precision metric

equation where i ranges over the entire features set.

Precision =
∑ Correctly	Retrieved	Links	� 			

∑ Total	Retrieved	Links�

%									���1

Precision values can have any value in the interval [0, 1].

Higher precision values mean better results for the approach

that establishes traceability links.

2) Recall

Recall quantifies number of relevant links that are

retrieved for a given feature. Recall is the percentage of

correctly retrieved links to the total number of relevant links.

Below given equation 2 represents recall metric equation

where i ranges over the entire features set.

Recall =
∑ Correctly	Retrieved	Links� 			

∑ Total	Relevant	Links�

%													���2

Recall values can have any value in the interval [0, 1].

Higher recall values mean better results for the approach

that establishes traceability links.

C. Performance of Our Approach

LSI associate related tokens into topics based on

their occurrences in the documents in a corpus. The

most important parameter to LSI is the number of topics that

should be used for topic-model building. We need enough

topics to catch real term relations. Too many topics lead to

associate irrelevant terms. Small number of topics lead to

lost relevant terms. According to Dumais et al. [23], the

number of topics is between 235 and 250 for natural

language. For a corpus of source code files, Poshyvanyk et

al. [24] recommended that the number of topics is 750.

In this work we cannot use a fixed number of topics for

LSI because we have different size of partitions. Thus, we

use a factor k between 0.01 and 0.04 to determine number of

topics. The number of topics (#topics) = k × docd, where

docd is document dimensionality of term-document matrix

that is generated by LSI. We evaluate the performance of

our approach for #topic at k= 0.01, 0.02, 0.03 and 0.04.

Figures 2 and 3 compare the precision and recall results

for our approach against applying LSI in conventional way.

The graphs A,B,C,D given in figures 2 and 3 corresponds to

Product1,Product2,Product3 and Product4 respectively.

The X-axis in the graphs represents the number of LSI

topics while Y-axis in the figures 2 and 3 correspond to

precision and recall respectively. It can be noticed that our

approach always gives a better precision and recall results

than applying LSI in conventional way.

The threat to the validity of our approach is that if

developers don’t use the same vocabularies to name source

code identifiers across product variants. This would means

that lexical matching at implementation level will be

effected. However, when a company has to develop a new

product that is similar, but not identical, to existing ones, an

existing product is cloned and later modified according to

new demands.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that uses LSI in

effective way to establish traceability links between the

object oriented source code of a collection of product

variants and a given features of these variants. Our approach

exploits variability and commonality distribution of product
1
 http://argouml-spl.tigris.org/

21

REVE 2013 Pre-Proceedings

variants to reduce features and implementation spaces such

that LSI can be applied in efficient way. The evaluation of

our approach with a collection of four ArgoUML-SPL

products showed that our approach significantly

outperforms applying LSI in conventional way according to

the precision and recall metrics.

In our future work, we plan to use existing

relationships between source code elements (e.g.,

method call, class inheritance and son on) to improve the

relevance of identified traceability links. This will require a

definition for semantic similarity measure between source

code elements.

REFERENCES

[1]. A. Marcus and J.I. Maletic. Recovering documentation-to-source
code traceability links using Latent Semantic Indexing. ICSE
2003, pp.125-137.

[2]. Y. Xue, Z. Xing, and S. Jarzabek. Understanding feature evolution in
a family of product variants. WCRE 2010, pp.109-118.

[3]. P.Clements and L.Northrop. Software product lines: practices
patterns. Addison-Wesley Longman Publishing Co., Boston, MA,
USA, 2001

[4]. Y. Ghanam and F.Maurer. Linking feature models to code artifacts
using executable acceptance tests. In Proceedings of the 14th
international conference on Software product lines: going
beyond (SPLC'10), Jan Bosch and Jaejoon Lee (Eds.). Springer-
Verlag, Berlin, Heidelberg,2010, 211-225.

[5]. P.Ye, X.Peng, Y.Xue and S. Jarzabek.: A Case Study of
Variation Mechanism in an Industrial Product Line. ICSR. 2009,126-
136.

[6]. D.Andrea, F.Fausto, O.Rocco and T.Genoveffa. Recovering
traceability links in software artifact management systems using
information retrieval methods. ACM Trans. Softw. Eng. Methodol.
16, 4,20007, Article 13 .

[7]. D.Beuche, H.Papajewski, S.Wolfgang.. Variability management with
feature models. Sci. Comput. Program. 53, 3 (December 2004), 333-
352. 352.

[8]. I. John and M. Eisenbarth, “A decade of scoping: a survey,” in SPLC,
ser. ACM International Conference Proceeding Series, D. Muthig and
J. D. McGregor, Eds., vol. 446. ACM, 2009, pp. 31–40.

[9]. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location
in source code: A taxonomy and survey, JSME, 28 Nov, 2011.

[10]. M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in CSMR,
T. Mens, Y. Kanellopoulos, and A. Winter, Eds. IEEE Computer
Society, 2011, pp. 191–200.

[11]. S. Wang, D. Lo, Z. Xing, and L. Jiang. Concern localization
using information retrieval: An empirical study on Linux kernel.
WCRE 2011, pp. 92-96.

[12]. J. Rubin and M. Chechik. Locating distinguishing features using diff
sets. InProceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering(ASE 2012). ACM, New York,
NY, USA, 242-245.

[13]. G. Orlena and F. Anthony. An analysis of the requirements
traceability problem. In Proceedings of 1st International Conference
on Requirements Engineering (Colorado Springs, CO). IEEE
Computer Society Press,1994, Los Alamitos, CA, 94–101.

[14]. S. George and Z. Andrea. Software Traceability: A Roadmap, in
Handbook of Software Engineering and Knowledge Engineering,
Chang, S. K., Ed. World Scientific Publishing Co,2004 , pp. 395-428.

[15]. W.Shaowei, L.David, X.Zhenchang and J.Lingxiao .Concern
Localization using Information Retrieval: An Empirical Study on
Linux Kernel. In Proceedings of the 2011 18th Working Conference
on Reverse Engineering (WCRE '11). IEEE Computer Society,
Washington, DC, USA, 92-96.

[16]. S.Gerard and M.Michael. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc.,1996, New York, NY, USA.

[17]. M.Andrian and M.Jonathan. "Identification of High Level Concept
Clones in Source Code", in Proceedings of Automated Software
Engineering (ASE'01), San Diego, CA, November 26-29 2001, pp.
107-114.

 A B

C D

Figure 2. Precision results for our approach against applying LSI in

conventional way.

A B

Figure 3.Recall results for our approach against applying LSI in

conventional way.

C D

22

REVE 2013 Pre-Proceedings

[18]. M. Riebisch, “Towards a more precise definition of feature models,”
in Modelling Variability for Object-Oriented Prod- uct Lines, M.
Riebisch, J. O. Coplien, and D. Streitferdt, Eds. Norderstedt:
BookOnDemand Publ. Co, 2003, pp. 64–76.

[19]. K. Kyo, C.Cohen,H.James,N.William and P.Spencer.Feature-
Oriented Domain Analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, 1990,Carnegie Mellon University.

[20]. X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE,
W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds.ACM, 2008, pp. 511–
520.

[21]. L. Bergroth and H. Hakonen and T. Raita. A Survey of
Longest Common Subsequence Algorithms. SPIRE 2000, pp. 39–48.

[22]. E.Hamzeh, S.Abdelhak-Djamal, D.Christophe and A.Ra'Fat.
Recovering Traceability links between Feature Models and Source
Code of Product Variants. ACM VARY Workshop (VARY:
VARiability for You @ MODELS 2012, Sept. 30th - Oct. 5th, 2012 -
Innsbruck, Austria.

[23]. S.T. Dumais. LSI meets TREC: A status report, in Proceeding of Text
Retrieval Conference, pp. 137-152. 1992.

[24]. D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Guéhéneuc, and
G. Antoniol. Combining Probabilistic Ranking and Latent
Semantic Indexing for Feature Identification. ICPC, pp. 137-148,
2006.

23

REVE 2013 Pre-Proceedings

