
© Fraunhofer

A COMPARATIVE STUDY ON VARIABILITY CODE ANALYSIS

TECHNOLOGY

Suparna S Nair, Martin Becker, Vasil Tenev, 19.10.2020

1

© Fraunhofer

Context

 The VITAL (Variability ImprovemenT AnaLysis)

approach and toolset has been developed to support

variability management improvement in industrial PLE

settings

 Successfully applied in different industrial contexts

 Shortcomings and improvement opportunities identified

in the toolset

© Fraunhofer

Goals

With a mid-term goal of developing a modular PLE

analysis building kit by enhancing the VITAL approach,

this study:

 Explores different frameworks and libraries in academia and

industry for variability extraction from software artifacts

 Reports experiences acquired during the study

 Compares the features in different tools with respect to

improving the VITAL approach

 Provides recommendations for variability code analysis for

different software artifacts

 Focus on variability management on embedded software

product lines, with target language as C/C++

© Fraunhofer

Investigations

 Approach based on 5 key features of interest with respect to VITAL enhancement:

[Core]: extract basic variability realization information like variabilities, variation points, and presence

conditions,

[Deps]: extract variability inter-dependencies and parent-child relationships, with an aim to reconstruct

the feature model,

[Adv]: extract conditional compilation states and include graphs,

[Cust]: degree of control the analyst/ developer has in customizing the data objects provided by the

respective tool/framework to meet the specific variability analysis requirements,

[Ext]: possibility to extend the methodology for recovering variability code from generic software

artifacts

 Frameworks, Parser Generators, Python libraries and C++ Compilers were selected for study

© Fraunhofer

Investigations

 Feasibility studies on:

 TypeChef

 ANTLR

 FeatureHouse

 REVaMP2 / BUT4Reuse

 PCPP

 Clang and LLVM

 CPIP

 Evaluated the tools against FreeRTOS v10.2.1

© Fraunhofer

Inferences

 TypeChef – Uses a partial preprocessor developed using ANTLR parser

generator. Challenges in preprocessor intricacies

 ANTLR – Parser generator which requires specific variability aware

grammar file to be developed to extract variability elements and inter-

dependencies. Cannot be used as is. Requires tailored grammar file.

 FeatureHouse – Software composition based on language independent

model. Generates Feature Structure Trees based on specific grammar

files. Does not support variability code extraction as is, requires tailored

grammar files. Potential candidate for variabilities realized using

conditional execution.

FST generated using FeatureHouse

library

© Fraunhofer

Inferences

 PCPP – C99 preprocessor written in Python. Ability to access partial

preprocessing information. Flexibility is limited

 Clang & LLVM – C compiler with Python bindings. Limited ability to

parse preprocessor information. pp-trace utility provided intermediate

preprocessing results.

 CPIP – C99 preprocessor implemented in Python. Ability to access

preprocessing information including conditional compilation states and

include graphs. Additional implementation required for complete

variability extraction support (including hierarchical dependencies).

Hierarchical dependencies extracted

using modified CPIP library

© Fraunhofer

Comparison

 Following comparison is against the desirable properties derived for the frameworks with respect to VITAL

enhancements

 ++ : fully supported

 + : supported with

extensions

 - : partially supported with

extensions

 -- : not supported at all

© Fraunhofer

Conclusion

 Following are the recommendations based on our inferences:

 For parsing variability code realization using conditional compilation in C/C++ - standard C

preprocessor written in Python which provides ability to control the data to the desired form (CPIP)

 For parsing variability code realization using conditional execution (e.g., C, Java etc.) – a library that

provides an AST, which can identify conditional statements and hierarchical dependencies

(FeatureHouse, ANTLR)

 For parsing any other software artifact like requirements, UML diagrams, *.ini – library that allows

users to write the grammar for that specific artifact (FeatureHouse, ANTLR)

© Fraunhofer

Further Reading

 “Recovery of Configuration Knowledge by Analysis of

Variability Code Realization”

(Master’s Thesis)

Suparna S Nair

Email: suparnasnair@gmail.com

© Fraunhofer

Thank You

Any Questions?

