

A Reusable Set of Real-World Product Line Case Studies for Comparing Variability Models in Research and Practice

Kristof Meixner2,3Kevin FeichtingerRick RabiserStefan Biffl³

¹LIT CPS JKU Linz / ²CDL SQI TU Wien / ³ISE TU Wien

Context – Cyber-Physical Production Systems

- Cyber-Physical Production Systems (CPPSs) **interact** with the environment to **self-adapt** to the conditions
- CPPSs enable flexible production of customized products, i.e., product families
- Engineering artifacts (e.g. CAD drawings) contain variant information but are unstructured
- Requires analyses to model and extract the CPPS variability

TV Problem – Cyber-Physical Production Systems

JYZU JOHANNES KEPLER UNIVERSITÄT LINZ

- Amount of structured variability modeling approaches is overwhelming
- **Industrial practitioners** are **often unaware** of available approaches and their application
- **Case studies help** researchers and practitioners **gaining insights** into variability modeling
- CPPS real-world cases for variability are rare, often not accessible, and hard to reproduce [1].
- Researchers often use toy examples or develop fictitious case studies.

RQ1. Which real-world case studies satisfy requirements to investigate product variability in CPPSs?

- Proposal of **minimal requirements**
- Elicitation of **real-world case studies**

Requirements for Production System Case Studies

- **Req1. Product variability** in production systems.
 - Case must cover the variability of products that can be manufactured on a production system.
- Req2. Structured product variants.
 - **Products need to be sufficiently similar** to build a product line. (50% 80% commonalities) [2]
- Req3. Availability of domain experts or documentation.
 - Experts who understand the product line and CPPS to discuss variability. Documentation to properly describe the case study.

- 1. Identify accessible real-world case studies
 - Two methodologies, case study guideline [3] and design science methodology [4]
 - Interviews with practitioners and researchers from three collaborations
 - · Identification of four cases that fulfill the requirements with documentation material

©Vaclav Jirkovsky

©World Arm Lamp, CC0 on Wikipedia

©Askwar Hilonga

RQ2. How can we obtain comparable variability models from the real-world cases?

- Translation of the case studies to a unified industrial CPPS domain-specific language
- Transformation of the case studies to a feature models and back

1. Identify accessible real-world case studies

2. Extract variability information to Product-Process-Resource DSL (PPR DSL).

- Data Analysis Modeling of the product lines in the PPR DSL [5]
- Support of collaborations in modeling

Attribute "length": { type: "Number", unit: "mm" }

Product "Chassis": { name: "Chassis" }
Product "Cabin": { name: "Cabin" }

Product "Body": { name: "Body", isAbstract: true }

Product "Tank": { name: "Tank", isAbstract: false , implements: ["Body"] }

Product "OpenTop": { name: "OpenTop", isAbstract: false , implements: ["Body"], length: 30 }

Product "Legotruck": { name: "Legotruck", isAbstract: true , children: ["Chassis", "Cabin", "Body"], requires: ["Chassis", "Cabin", "Body"] }

Product "Legotruck1": { name: "Legotruck1", isAbstract: false , implements: ["Legotruck"], requires: ["Tank"], excludes: ["OpenTop"] }

Transformation to structured Variability Models

- 1. Identify accessible real-world case studies
- 2. Extract variability information to PPR DSL.
- 3. Transformation of PPR DSL artifacts to feature models.
 - VERT process [6] enables users to transform engineering artifacts containing variability information, such as the PPR DSL
 - Definition of TraVarT mappings [7] between the PPR DSL and FeatureIDE [8] feature models

	PPR DSL	Feature Model	
e,	attribute	property	
but	type	property	
tri tri	unit	property	
5 8	defaultValue	property	
	description	property	
	id	name	
ict	name	property	
ipo.	isAbstract	defines if the feature is abstract	
pr.	implements	property/feature tree	
	requires	implies constraint	
	excludes	excludes constraint	

- Water filter for safe water usage in Tanzania
 - Filters impurities and remove contaminants
 - · Low-cost but customizable working without electricity

Data

- Semi-structured online interview and email communication
- Manual, project documents, company website

• Product line

Parts/Types	Complexity	#Product Variants	#DSL Elements	#Dependencies	#Features	#Constraints	#Configurations
3D-printed truck	low	4	12	31	13	31	23
Shift fork	low	4	22	36	25	38	67
Water filter	medium	8	54	165	55	165	217
Rocker switch	medium	12	54	184	55	216	183

©Askwar Hilonga

- The four case studies **advance currently available industrial studies** for production systems
- Using the **PPR DSL and TraVarT** can make variability models **better comparable**
- Our approach is a good starting point to evaluate variability modeling approaches for CPPS
- Using the **real-world case studies** can help **educating product line engineering** to CPPS engineers [9]

- Identified selection criteria for real-world case studies of product lines in CPPS
- Elicited **four case studies on product variability** from the **production domain** satisfying the requirements
 - Cases and artifacts are available online: https://github.com/tuw-qse/cpps-var-case-studies
 - Addressed reusable and reproducible product lines in CPPSs
- Introduced **transform operations** from Product-Process-Resource DSL to feature models
- Automatically transformed the DSL instances to feature models
- Future Work
 - Incorporation of process variability in the case studies
 - Usage of other variability models like decision modeling, e.g., for process variability modeling

<u>Kristof Meixner²</u> Rick Rabiser¹

Kevin Feichtinger¹ Stefan Biffl²

¹ *< first.last>*@jku.at ² *< first.last>*@tuwien.ac.at

[1] <u>https://but4reuse.github.io/espla_catalog/</u>

- [2] Paul Clements and Linda Northrop. 2002. Software product lines. Addison-Wesley Boston.
- [3] Per Runeson and Martin Höst. 2008. Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering 14 (2008), 131–164.
- [4] Roel J. Wieringa. 2014. Design science methodology for information systems and software engineering. Springer.
- [5] Kristof Meixner, Felix Rinker, Hannes Marcher, Jakob Decker, and Stefan Biffl. 2021. A Domain-Specific Language for Product-Process-Resource Modeling. In IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA). IEEE.
- [6] Kevin Feichtinger, Kristof Meixner, Rick Rabiser, and Stefan Biffl. 2020. Variability Transformation from Industrial Engineering Artifacts: An Example in the Cyber- Physical Production Systems Domain. In 24th ACM Int. Systems and Software Product Line Conf. - Volume B (SPLC '20). ACM, New York, NY, USA, 65– 73.
- [7] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

- [8] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.
- [9] Kristof Meixner, Rick Rabiser, and Stefan Biffl. 2019. Towards Modeling Variability of Products, Processes and Resources in Cyber-Physical Production Systems Engineering. In 23rd Int. Systems and Software Product Line Conf. - Volume B. ACM, 68:1–68:8.