
1/12 1/12

Extending the Identification of Object-Oriented Variability
Implementations using Usage Relationships

Johann Mortara1 Xhevahire Tërnava2 Philippe Collet1

Anne-Marie Dery-Pinna1

1Université Côte d’Azur, CNRS, I3S, France
2Université de Rennes 1, INRIA/IRISA, France

SPLC, REVE, September 07, 2021



2/12 2/12

Context

Most modern object-oriented systems are variability-rich

~ their variability is hardly documented or made explicit in code
~ lack of approaches on identifying their variability
~ lack of approaches on representing (visualizing) their variability



2/12 2/12

Context

1
https://doi.org/10.1145/3336294.3336311

2
https://doi.org/10.1145/3382026.3431251

Most modern object-oriented systems are variability-rich

~ their variability is hardly documented or made explicit in code
~ lack of approaches on identifying their variability
~ lack of approaches on representing (visualizing) their variability

⇒ symfinder : a tooled approach (Java 1 and C++ 2)

~ Identifying variability implementation places (Variation Points with
Variants) in single codebase object-oriented systems

* based on the property of symmetry in 7 traditional techniques

~ Visualizing of Variation Points (VPs) with Variants
* based on their density

https://doi.org/10.1145/3336294.3336311
https://doi.org/10.1145/3382026.3431251


3/12 3/12

Example of symmetry in object-oriented techniques

Variability in JFreeChart: ~ Most of the traditional
techniques can be interpreted
in terms of symmetry



3/12 3/12

Example of symmetry in object-oriented techniques

Variability in JFreeChart: ~ Most of the traditional
techniques can be interpreted
in terms of symmetry

V Pa

Va1 Va2

Visualization by symfinder



4/12 4/12

Problem statement

symfinder: Applied: > 15 real open-source systems

- Identified: 200 - 11K potential VPs with Variants

- Precision: potential ⇒ real VPs with Variants

Issue 1: Identifying inheritance relationships is not enough

- Composition of instances is not taken into account

Issue 2: Entry points are missing: for browsing the visualization



5/12 5/12

symfinder-2
Extension 1: handling usage relationships (+7 variability implementation techniques)

v_JFreeChart

vp_PiePlot

vp_Plotv_DefaultDrawingSupplier

vp_XYPlot
vp_CategoryPlot

à



6/12 6/12

symfinder-2
Extension 2: handling the entry points

4 user-defined entry points (à)

Automatically defined entry points (using the system’s API)

v_JFreeChart

vp_PiePlot

vp_Plotv_DefaultDrawingSupplier

vp_XYPlot
vp_CategoryPlot

àà
à

à



7/12 7/12

Evaluation

In 10 open-source Java-based systems,
regarding 4 research questions



8/12 8/12

Evaluation
RQ1: Does the identification of usage relationships have changed the variability
visualization of a given system by symfinder-2?

Same variability; denser places with variability;
less isolated nodes



9/12 9/12

Evaluation
RQ2: What is the starting density threshold to begin with the comprehension of the
visualized variability by symfinder-2?

The threshold parameters depend on the studied system;
First threshold can be used as a good starting point



10/12 10/12

Evaluation
RQ3: Is the API information of a given system useful to simplify its identified variability
by symfinder-2?

Potential VPs with variants ⇒ relevant variability places;
Integrate different variability information sources



11/12 11/12

Evaluation
RQ4: Does the identification of usage relationships impact the scalability of symfinder-2?

Visualization: 700ms in Chrome, 850ms in Firefox for NetBeans

The time difference is increased with the size of analysed system



12/12 12/12

Summary

A tooled approach for I&V potential VPs with Variants

in OO systems, with a single code base, implemented in Java

Extended symfinder ⇒ symfinder2

It identifies the impl. variability by 8 traditional techniques

It provides 5 entry points for variability comprehension

Propose to integrate different variability sources

Availability:

https://deathstar3.github.io/symfinder2-demo/

https://deathstar3.github.io/symfinder2-demo/

	

