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coding platforms centred around git provide
to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on lhc

surveyed 105 maintainers of different active open source \armnl
projects hosted on GitHub. Our study extends previous findings,
common_ for

rojects.
Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

L. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]-[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]1-[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g.. patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves arc not enough for graceful

, making it toi
for co-evolution (how?).
We therefore explore two research questions:

RQI: Why do developers create and maintain variants
on GitHub? The literature pre-dating gir and social coding
platforms identified four categories of motivations for creating
variant forks: technical (c.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the
mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss
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ABSTRACT

Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by different developers (we see this as effort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and effort duplication
from a pool of patches. We analyzed 364 (source—target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS

- Software and its engineering — Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
figuration management and version control systems

KEYWORDS

Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-fixes, Effort duplication, Clone detection

1 INTRODUCTION

Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&ow,
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates,

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14,37, 51]. As
a result, two or more software pr(lJELh w,u share a common code
base as wellas i D de. The mul

software systems are referred to asa soﬂware family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance efforts rapidly
grow [7, 23, 45, 54). For example, if a bug is discovered and fixed in
one variant, it is often unclear which other variants in the family
are affected by the same bug and how this bug should be fixed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14]

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-fixes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bugfixes (patches) from a ool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the first large-scale study on
automatically identifying (and recommending) relevant bug fixes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source—target) variant pairs and vali-
dated the tool's output. This results in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of effort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug fixes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug fixes, but are
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$425M Canadian citizens were compromised in the breach, making it one
of the largest cybercrimes related to identity theft.

Wired Magazine, “Equifax has no excuse”, September 2017
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Variant Forks — Motivations and Impediments
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Abstract—S

coding platforms centred around git provide
explicit faci to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and li
maintaining the co-e j

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variab

ing concrete impediments for

L. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]-[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]1-[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
n the common artefacts. Despite advanced code-
s, Businge et al. observed very limited code
integration, using the gir and GitHub facilities, between the
‘mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
c ion, making it ile to investigate i i
for co-evolution (how?).

We therefore explore two research questions:

RQI: Why do developers create and maintain variants
on GitHub? The literature pre-dating gir and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g.. diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the
mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

Variant forks - motivations and impediments.

Proceedings SANER 2022
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Why do developers create and maintain variants on GitHub? ;f
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Previous studies identified four categories of motivations for creating variant forks:
* technical (e.g., diverging features),

* governance (e.g., diverging interests),
* |egal (e.g., diverging licenses), and
 personal (e.g., diverging principles).
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[R59]. Motivation — governance. 'The PR to merge
the fork's new capabilities into the mainline code
was too large, [...] and my attempts to incorporate
feedback into the PR [...] ended upsetting the
primary maintainer who has been studiously
ignoring the pull request for three years. @
Motivation-detail — responsiveness.

R36]. Motivation — legal. “The founders
of the mainline had been absent from the
project for several years, but came back
and booted the maintainers off and [...]
shifted the project to a closed source.”
Motivation detail — closed source.
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18]. motivation — others. “[The] maintainer was
not interested in a PR that added functionality
needed by a project I'm developing. [It] was
considerably easier to add the logic into the [new]
library than bolt it on”.

Motivation-detail — supporting personal projects.
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100 of the 105 variant developers answered the
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How do variant projects evolve with respect to the mainline?

SECO-Assist

SQ. Do the variant forks and the original project still discuss the main directions of the project?

never 4 53 (51.5%) |
yes 4 16 (15.5%)
technically diverged 1 11 (10.7%)
not sure N 8 (7.8%)
variant follows mainline 5(4.9%)
variant merged back 2 (1.9%)
common issues are discussed 1(1%)
conntrolled by same developers 1(1%)
in contact but rarely discuss 1(1%)
mamhn); hostile - 1(1%) never
mainnline not very active 1(19%)
only once 1(1%)
they swap techical details 1(1%)
variant is a mirror of mainline ! 1 (1%) _ . . ) )
0 10 20 30 40 50 60

% responses

[R57]. “We used to discuss but
not anymore since the projects
have technically diverged”

[R54]. “Made PRs with changes but
those have just been ignored. They're
still “open" with 0 comments from
the mainline dev”

= =

[R67]. “changes | | [R36]. “mainline
are out of is hostile to

scope.” variant.”
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How do variant projects evolve with respect to the mainline? 4
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SQ. How often do the maintainers of the variant integrate the following types of changes to and from the mainline?
O~ * New features :.g
Mainlinel L= * Bugfixes Mainlinel .r\
O O O ity fi O O —()—
o 3 e Security fixes B A
=Optionally i s "Optionally
Variant (Mainline2) 2% W From * Refactorlngs- Variant (Mainline2) 2% & To
O O—s * Documentation O O—
0.0 e Others 0.0
& o
BN Never wmm Rarely Sometimes  mmm Often WEE Always BN Never W Rarely Sometimes . Oftei . Always
Newfeatures” | 1\ New features \

Bug fixes
Security Fixes
Refactoring

Documentation

Others

0%
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ABSTRACT

Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by different developers (we see this as effort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and effort duplication
from a pool of patches. We analyzed 364 (source—target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS

- Software and its engineering — Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
figuration management and version control systems

KEYWORDS

Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-fixes, Effort duplication, Clone detection

1 INTRODUCTION

Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&ow,
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates,

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as wellas i project-specific code. The mul
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance efforts rapidly
grow [7, 23, 45, 54). For example, if a bug is discovered and fixed in
one variant, it is often unclear which other variants in the family
are affected by the same bug and how this bug should be fixed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14]

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-fixes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bugfixes (patches) from a ool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the first large-scale study on
automatically identifying (and recommending) relevant bug fixes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source—target) variant pairs and vali-
dated the tool's output. This results in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of effort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug fixes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug fixes, but are
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Concrete Example: Missed Opportunity

Buggy code from upstream

1 return SECO-Assist
2 }

3 } while (p < (uintl6_t *)SYMVAL(__eeprom_workarea_end__)):

4 flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) - 1): G Buggy line

N 5

Patched code from upstream

1 return;

2 }

3 } while (p < (uintl6 t #)SYMVAL( _eeprom workarea end )): |

4 flashend = (uint32_t)(p - 1); &= Patched line
2 h

Diff for patch in upstream

@@ -363.7 +363,7 @@

- flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) - 1):

1

2

3 } while (p < (uintl6_t =)SYMVAL(__eeprom_workarea_end__)):

4 - ]- Hunk
5 + flashend = (uint32_t)(p - 1):

File from divergent fork at git head

1 return ;

2 }

3 3 while (p < (uintl6 t =)SYMVAL( __eceprom workarea end )):

4 flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) — 1): < p— Buggy line
2 h
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Concrete Example: Effort Duplication

Buggy code from upstream

Buggy line

1 # http ://ss64.com/nt/syntax—esc. html
2 _escape_re = re.compile(r'(?<!'\)[&<>]|?<"\OH\"(N&<>\"D")
3 _escaper = partial(_escape_re.sub, lambda m: + m. group(0))

Patched code from upstream

# http ://ss64.com/nt/syntax—esc. html

_escape_re = re.compile(r'(?<"\")[&<>]|?<"\OHI\"(N&<>\"D|(\]")

4= Patched line

W -

_escaper = partial(_escape_re.sub, lambda m:

Fm. group(0))

Diff for patch in upstream

1 @@ -24.7 +24.,7 @@

2

3 # http ://ss64 .com/nt/syntax —esc . html

4 - _escape_re = re.compile(r'(? <<!'"\M[&<>]1?<\O\"(N[&<>\"D")

5 + _escape_re = re.compile(r'(? <!\ H[&<>1<"\OHO\"(M&<>\"D|(\ )"
6 _escaper = partial (_escape_re.sub, lambda m: "'+ m.group(0))

Hunk

File from divergent fork at git head

# http ://ss64.com/nt/syntax—esc. html

N -

_escape_re = re.compile(r ' (?<!'\MH[&<>]C<\H\N&<>\"D|(\D")

== Patched line

~¢scaper = partiral(_escape_re.sub, lambda m:

+ m. group (U))

fwo
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8,323 patches from 364 source variants
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)

Reengineering Project 2021—2022

$Skafka [T3)

LinkedIn is a clone-and-own variant of Apache Kafka that was created
by copying and adapting the existing code of Apache Kafka.

LinkedIn has 500 individual commits, and Apache Kafka has 3,103
individual commits.

Your assignment is to identify numerous patches from patches.xls that
are of different sizes and integrate them in the source variant
LinkedIn. The size can be measured in terms of number of commits,
files_changed, added_lines, deleted_lines, modules.
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Cherry Picking — Merge Conflicts
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