
SECO-ASSIST

Social Coding Platforms Facilitate Variant Forks
(Keynote REVE-WEESR 2022)

Prof. Serge Demeyer
AnSyMo

1

SECO-ASSIST 2

https://secoassist.github.io/

Open Science

SECO-ASSIST

SECO-ASSIST

Collaborators

4

SECO-ASSIST 5

Variant forks - motivations and impediments.
Proceedings SANER 2022

Patched clones and missed patches among the
divergent variants of a software family.

Proceedings ESEC/FSE 2022

Variant Forks – Motivations and Impediments
John Businge,∗ Ahmed Zerouali,‡ Alexandre Decan,† Tom Mens,† Serge Demeyer,∗ and Coen De Roover,‡∗University of Antwerp, Antwerp, Belgium

{ john.businge | serge.demeyer }@uantwerpen.be
†University of Mons, Mons, Belgium

{ alexandre.decan | tom.mens }@umons.ac.be
‡ Vrije Universiteit Brussels, Brussels, Belgium

{ ahmed.zerouali | coen.de.roover }@vub.be

Abstract—Social coding platforms centred around git provide
explicit facilities to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and listing concrete impediments for
maintaining the co-existing projects.

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

I. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]–[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]–[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g., patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
co-evolution, making it worthwhile to investigate impediments
for co-evolution (how?).
We therefore explore two research questions:

RQ1: Why do developers create and maintain variants

on GitHub? The literature pre-dating git and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the

mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a So�ware Family

Poedjadevie Kadjel Ramkisoen1, John Businge1,5, Brent van Bradel1, Alexandre Decan2, Serge
Demeyer1, Coen De Roover3, and Foutse Khomh4

poedjadevie.ramkisoen@student.uantwerpen.be

(john.businge,Brent.vanBladel,serge.demeyer)@uantwerpen.be

alexandre.decan@umons.ac.be,Coen.De.Roover@vub.be,foutse.khomh@polymtl.ca

(1Universiteit Antwerpen & Flanders Make, 2F.R.S.-FNRS & University of Mons, 3Vrije Universiteit Brussel), Belgium,
4Polytechnique Montreal, Canada, 5University of Nevada, Las Vegas, U.S.A.

ABSTRACT
Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original.
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by di�erent developers (we see this as e�ort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and e�ort duplication
from a pool of patches. We analyzed 364 (source!target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS
• Software and its engineering ! Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
�guration management and version control systems.

KEYWORDS
Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-�xes, E�ort duplication, Clone detection

1 INTRODUCTION
Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&own”
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates.

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as well as independent, project-speci�c code. Themulti-variant
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance e�orts rapidly
grow [7, 23, 45, 54]. For example, if a bug is discovered and �xed in
one variant, it is often unclear which other variants in the family
are a�ected by the same bug and how this bug should be �xed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14].

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-�xes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bug�xes (patches) from a pool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the �rst large-scale study on
automatically identifying (and recommending) relevant bug �xes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source!target) variant pairs and vali-
dated the tool’s output. This results in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of e�ort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug �xes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug �xes, but are

SECO-ASSIST

November
2021

6

200M+Repositories 28M+Public
Repositories

170M+Pull requests
merged

Pull requests
merged73M+Total developers

on GitHub

SECO-ASSIST

Pull requests
merged73M+Total developers

on GitHub

200M+Repositories 28M+Public
Repositories

170M+Pull requests
merged

Clone&own

Original

Social Fork

7

SECO-ASSIST

The Equifax data breach occurred between May and July 2017 at
the American credit bureau Equifax. Private records of 147.9 million
Americans along with 15.2 million British citizens and about 19,000
Canadian citizens were compromised in the breach, making it one
of the largest cybercrimes related to identity theft.

Wired Magazine, “Equifax has no excuse”, September 2017

https://www.istockphoto.com/

CVE-2017- 5638

March 2017

DATA BREACH
May 2017

$425M

8

SECO-ASSIST

1.7k

9

SECO-ASSIST 10

Variant 2

Original project

Variant 1

Focus
VS

Social Fork

Social Fork

Original project

1. Social Forks 2. Variant Forks
Social Fork

Social Fork

Optionally
Pull request

10

SECO-ASSIST 11

Open-source keyboard firmware for Atmel AVR and Arm USB families

1. https://thenounproject.com/icon/stand-out-938131/

ZSA, forked for QMK Oryx Configurator (to safeguard stability)

gboards.ca keyboard firmware is maintained separately from qmk/master

2 Variant Forks

25.1k Social Forks

SECO-ASSIST

Upstream

Fork 1

Fork 2

Fork 3

Fork 4

Fork 5

Software family

upstream

Fork2

Fork5Variant

Variant

Variant

Social?

Social?

Social?

Java

ecosystems

1. Programming language: Java, Python, C, PHP, …
2. Dedicated projects: Android, Blockchain, Eclipse, …

12

Open
Science

SECO-ASSIST 13

Variant forks - motivations and impediments.
Proceedings SANER 2022

Patched clones and missed patches among the
divergent variants of a software family.

Proceedings ESEC/FSE 2022

Variant Forks – Motivations and Impediments
John Businge,∗ Ahmed Zerouali,‡ Alexandre Decan,† Tom Mens,† Serge Demeyer,∗ and Coen De Roover,‡∗University of Antwerp, Antwerp, Belgium

{ john.businge | serge.demeyer }@uantwerpen.be
†University of Mons, Mons, Belgium

{ alexandre.decan | tom.mens }@umons.ac.be
‡ Vrije Universiteit Brussels, Brussels, Belgium

{ ahmed.zerouali | coen.de.roover }@vub.be

Abstract—Social coding platforms centred around git provide
explicit facilities to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and listing concrete impediments for
maintaining the co-existing projects.

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

I. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]–[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]–[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g., patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
co-evolution, making it worthwhile to investigate impediments
for co-evolution (how?).
We therefore explore two research questions:

RQ1: Why do developers create and maintain variants

on GitHub? The literature pre-dating git and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the

mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a So�ware Family

Poedjadevie Kadjel Ramkisoen1, John Businge1,5, Brent van Bradel1, Alexandre Decan2, Serge
Demeyer1, Coen De Roover3, and Foutse Khomh4

poedjadevie.ramkisoen@student.uantwerpen.be

(john.businge,Brent.vanBladel,serge.demeyer)@uantwerpen.be

alexandre.decan@umons.ac.be,Coen.De.Roover@vub.be,foutse.khomh@polymtl.ca

(1Universiteit Antwerpen & Flanders Make, 2F.R.S.-FNRS & University of Mons, 3Vrije Universiteit Brussel), Belgium,
4Polytechnique Montreal, Canada, 5University of Nevada, Las Vegas, U.S.A.

ABSTRACT
Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original.
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by di�erent developers (we see this as e�ort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and e�ort duplication
from a pool of patches. We analyzed 364 (source!target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS
• Software and its engineering ! Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
�guration management and version control systems.

KEYWORDS
Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-�xes, E�ort duplication, Clone detection

1 INTRODUCTION
Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&own”
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates.

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as well as independent, project-speci�c code. Themulti-variant
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance e�orts rapidly
grow [7, 23, 45, 54]. For example, if a bug is discovered and �xed in
one variant, it is often unclear which other variants in the family
are a�ected by the same bug and how this bug should be �xed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14].

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-�xes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bug�xes (patches) from a pool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the �rst large-scale study on
automatically identifying (and recommending) relevant bug �xes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source!target) variant pairs and vali-
dated the tool’s output. This results in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of e�ort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug �xes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug �xes, but are

SECO-ASSIST 14

All of these studies and many others were
conducted in the pre-GitHub days

Current GitHub days only two
studies

Little is known about the motivations of creating
variants on social coding platforms.

Why do developers create and maintain variants on GitHub?

SECO-ASSIST 15

105 repositories
105 fork variant

developers

Survey

We designed a 12-question survey that included both
closed and open-ended questions.

card-sorting: from text to themes

open-ended questions

SECO-ASSIST 16

Motivation detail?Any original developer
in variant?

Any active common maintainer
between variants?

Decision to create
variant?

Motivation for creating
variant?

New findings

Confirmed previous
findings

Open-ended

SECO-ASSIST 17

Previous studies identified four categories of motivations for creating variant forks:
• technical (e.g., diverging features),
• governance (e.g., diverging interests),
• legal (e.g., diverging licenses), and
• personal (e.g., diverging principles).

do they still hold?

Why do developers create and maintain variants on GitHub?

SECO-ASSIST 18

Open-ended

New findings

Motivation detail?

[R36]. Motivation – legal. “The founders
of the mainline had been absent from the
project for several years, but came back
and booted the maintainers off and [...]
shifted the project to a closed source.”

100 of the 105 variant developers answered the
optional open-ended question

[R18]. motivation – others. “[The] maintainer was
not interested in a PR that added functionality
needed by a project I'm developing. [It] was
considerably easier to add the logic into the [new]
library than bolt it on”.

[R59]. Motivation – governance.``The PR to merge
the fork's new capabilities into the mainline code
was too large, [...] and my attempts to incorporate
feedback into the PR [...] ended upsetting the
primary maintainer who has been studiously
ignoring the pull request for three years.
Motivation-detail – responsiveness.

Motivation detail – closed source.

Motivation-detail – supporting personal projects.

SECO-ASSIST 19

SQ. Do the variant forks and the original project still discuss the main directions of the project?

never

[R67]. “changes
are out of
scope.”

[R36]. “mainline
is hostile to
variant.”

[R57]. “We used to discuss but
not anymore since the projects
have technically diverged”

[R54]. “Made PRs with changes but
those have just been ignored. They're
still ``open'' with 0 comments from
the mainline dev”

How do variant projects evolve with respect to the mainline?

SECO-ASSIST 20

SQ. How often do the maintainers of the variant integrate the following types of changes to and from the mainline?

Reasons for lack of interaction (Impediments):
i. technical divergence
ii. governance disputes
iii. diverging licenses,
iv. distinct development teams

• New features
• Bug fixes
• Security fixes
• Refactorings
• Documentation
• Others

From To

How do variant projects evolve with respect to the mainline?

SECO-ASSIST 21

Variant forks - motivations and impediments.
Proceedings SANER 2022

Patched clones and missed patches among the
divergent variants of a software family.

Proceedings ESEC/FSE 2022

Variant Forks – Motivations and Impediments
John Businge,∗ Ahmed Zerouali,‡ Alexandre Decan,† Tom Mens,† Serge Demeyer,∗ and Coen De Roover,‡∗University of Antwerp, Antwerp, Belgium

{ john.businge | serge.demeyer }@uantwerpen.be
†University of Mons, Mons, Belgium

{ alexandre.decan | tom.mens }@umons.ac.be
‡ Vrije Universiteit Brussels, Brussels, Belgium

{ ahmed.zerouali | coen.de.roover }@vub.be

Abstract—Social coding platforms centred around git provide
explicit facilities to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and listing concrete impediments for
maintaining the co-existing projects.

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

I. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]–[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]–[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g., patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
co-evolution, making it worthwhile to investigate impediments
for co-evolution (how?).
We therefore explore two research questions:

RQ1: Why do developers create and maintain variants

on GitHub? The literature pre-dating git and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the

mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a So�ware Family

Poedjadevie Kadjel Ramkisoen1, John Businge1,5, Brent van Bradel1, Alexandre Decan2, Serge
Demeyer1, Coen De Roover3, and Foutse Khomh4

poedjadevie.ramkisoen@student.uantwerpen.be

(john.businge,Brent.vanBladel,serge.demeyer)@uantwerpen.be

alexandre.decan@umons.ac.be,Coen.De.Roover@vub.be,foutse.khomh@polymtl.ca

(1Universiteit Antwerpen & Flanders Make, 2F.R.S.-FNRS & University of Mons, 3Vrije Universiteit Brussel), Belgium,
4Polytechnique Montreal, Canada, 5University of Nevada, Las Vegas, U.S.A.

ABSTRACT
Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original.
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by di�erent developers (we see this as e�ort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and e�ort duplication
from a pool of patches. We analyzed 364 (source!target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS
• Software and its engineering ! Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
�guration management and version control systems.

KEYWORDS
Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-�xes, E�ort duplication, Clone detection

1 INTRODUCTION
Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&own”
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates.

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as well as independent, project-speci�c code. Themulti-variant
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance e�orts rapidly
grow [7, 23, 45, 54]. For example, if a bug is discovered and �xed in
one variant, it is often unclear which other variants in the family
are a�ected by the same bug and how this bug should be �xed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14].

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-�xes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bug�xes (patches) from a pool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the �rst large-scale study on
automatically identifying (and recommending) relevant bug �xes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source!target) variant pairs and vali-
dated the tool’s output. This results in a curated dataset containing
1,116 cases of e�ort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of e�ort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug �xes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug �xes, but are

SECO-ASSIST

Problem

22

SECO-ASSIST 23

Buggy code from upstream

File from divergent fork at git_head

Buggy line

Patched code from upstream

Diff for patch in upstream

Patched line

Buggy line

Hunk

Concrete Example: Missed Opportunity

SECO-ASSIST 24

Buggy line

Patched line

Hunk

Buggy code from upstream

File from divergent fork at git_head

Patched code from upstream

Diff for patch in upstream

Patched line

Concrete Example: Effort Duplication

SECO-ASSIST 25

apache/kafka (upstream) - linkedin/kafka (fork) linkedin/kafka (fork)

apache/kafka (upstream)

MO – Missed opportunity
ED – Effort duplication
SP – Both buggy and patched lines
NI – Uninteresting
CC – Unhandled programming language
NE – Missing file in target
EE – Error

NI

microsoft/azure-tools-for-java (upstream) - JetBrains/azure-tools-for-intellij (fork)

microsoft/azure-tools-for-java (upstream)

JetBrains/azure-tools-for-intellij (fork)

NI

SECO-ASSIST

8,323 patches from 364 source variants

Precision Recall Accuracy F1-Score

91.0% 80.2% 88.0% 85.3%

26

1,1161,008 101

NI

MO – Missed opportunity
ED – Effort duplication
SP – Both buggy and patched lines
NI – Not interesting
CC – Unhandled programming language
NE – Missing file in target
EE – Error

2,225 interesting patches

SECO-ASSIST

Reengineering Project 2021—2022

27

LinkedIn is a clone-and-own variant of Apache Kafka that was created
by copying and adapting the existing code of Apache Kafka.
…
LinkedIn has 500 individual commits, and Apache Kafka has 3,103
individual commits.
…
Your assignment is to identify numerous patches from patches.xls that
are of different sizes and integrate them in the source variant
LinkedIn. The size can be measured in terms of number of commits,
files_changed, added_lines, deleted_lines, modules.

SECO-ASSIST 28

SECO-ASSIST

Cherry Picking – Merge Conflicts

29

SECO-ASSIST 30

SECO-ASSIST 31

30

