@
L\

SECO-Assist

Social Coding Platforms Facilitate Variant Forks
(Keynote REVE-WEESR 2022)

Prof. Serge Demeyer
AnSyMo

U' Universiteit
Antwerpen

fwo SECO-ASSIST frle -

https://secoassist.github.io/

@ secoassist.github.io

Home News Events Overview Members Publications Presentations Tools & Datasets

Tools and Datasets

Open Science

Cited by

Citations
h-index
i10-index

All

9287
43
107

VIEW ALL

Since 2017

2521
23
57

560

420

280

140

0

2015 2016 2017 2018 2019 2020 2021 2022

fwo

SECO-ASSIST

HI10

SECURITY
INTEGRATIONS

garvis

| 1
!\—”‘
\ - - /

!‘ Y - -
Universiteit
|Antwerpen

Collaborators

Universiteit g MONS

Antwerpen

Université de Mons

fwo SECO-ASSIST

VRIJE
UNIVERSITEIT
BRUSSEL

% POLYTECHNIQUE
MONTREAL
: TECHNOLOGICAL
UNIVERSITY

A
A
Tl
11(
{

fnig

Variant Forks — Motivations and Impediments

John Businge,” Ahmed Zerouali,* Alexandre Decan,” Tom Mens," Serge Demeyer,” and Coen De Roover,*
*University of Antwerp, Antwerp, Belgium
{ john.businge | serge.demeyer } @uantwerpen.be
University of Mons, Mons, Belgium
{ allexandre.decan | tom.mens } @umons.ac.be

Vrije Universiteit Brussels, Bru

Is, Belgium

{ ahmed zerouali | coen.de.roover } @vub.be

coding platforms centred around git provide
to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on lhc

surveyed 105 maintainers of different active open source \armnl
projects hosted on GitHub. Our study extends previous findings,
common_ for

rojects.
Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

L. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]-[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]1-[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g.. patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves arc not enough for graceful

, making it toi
for co-evolution (how?).
We therefore explore two research questions:

RQI: Why do developers create and maintain variants
on GitHub? The literature pre-dating gir and social coding
platforms identified four categories of motivations for creating
variant forks: technical (c.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the
mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a Software Family

Poedjadevie Kadjel Ramkisoen', John Businge!*, Brent van Bradel!, Alexandre Decan?, Serge
Demeyer’, Coen De Roover?, and Foutse Khomh*

poedjadevieramkisoen@student.uantwerpen.be

(john.businge, Brent.vanBladel, serge.demeyer)@uantwerpen.be

alexandr be,Coen.De.!

be,fout: lymtl.ca

('Universiteit Antwerpen & Flanders Make, *FR.S.-FNRS & University of Mons, *Vrije Universiteit Brussel), Belgium,
“Polytechnique Montreal, Canada, *University of Nevada, Las Vegas, US.A.

ABSTRACT

Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by different developers (we see this as effort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and effort duplication
from a pool of patches. We analyzed 364 (source—target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS

- Software and its engineering — Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
figuration management and version control systems

KEYWORDS

Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-fixes, Effort duplication, Clone detection

1 INTRODUCTION

Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&ow,
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates,

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14,37, 51]. As
a result, two or more software pr(lJELh w,u share a common code
base as wellas i D de. The mul

software systems are referred to asa soﬂware family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance efforts rapidly
grow [7, 23, 45, 54). For example, if a bug is discovered and fixed in
one variant, it is often unclear which other variants in the family
are affected by the same bug and how this bug should be fixed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14]

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-fixes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bugfixes (patches) from a ool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the first large-scale study on
automatically identifying (and recommending) relevant bug fixes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source—target) variant pairs and vali-
dated the tool's output. This results in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of effort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug fixes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug fixes, but are

SECO-Assist

Patched clones and missed patches among the
divergent variants of a software family.
Proceedings ESEC/FSE 2022

Variant forks - motivations and impediments.
Proceedings SANER 2022

SECO-ASSIST Nnig

Egithub

SOCIAL CODING

Popularity Trend since 2014 ‘v

source
Forge. w - GitHub
Hard fork Google code Bitbucket N\

T . o — =
‘93 ‘99 ‘02 ‘05 ‘08 ‘ ‘11 ‘14 17
-~ QD 0 ——¢
Hudson Gk Jeniine
BsD ‘
si o ~
19';?\?,‘!'}\,?‘ OpenOffice reOffice }

fwo

»-@

; 3 Total developers

on GitHub

Repositories

SECO-ASSIST

November
2021

Pull requests
merged

©
2

M+

Public
Repositories

SECO-Assist

fnlg -

fwo

Social Fork

Original ™ <&’
SECO-Assist

L
g%%ngwn

; 3 Total developers 'g 3 i
on GitHub
1 ; Pull requests

® Q
200M | | 2 M+

Repositories

SECO-ASSIST fnrg

the American credit bureau Equifax. Private records of 147.9 million

O% Americans along with 15.2 million British citizens and about 19,000 LN
SECO-Assist

g
@ The Equifax data breach occurred between May and July 2017 at N 00
.

$425M Canadian citizens were compromised in the breach, making it one
of the largest cybercrimes related to identity theft.

Wired Magazine, “Equifax has no excuse”, September 2017

open source March 2017

_ Failure to patch two-month-old bug led to

EQU'FAx massive Equifax breach

Critical Apache Struts bug was fixed in March. In May, it bit ~143 million US consumers.
DATA BREACH
May 2017

.

dl'S TECHNICA

CVE-2017-5638

frxnroyzoonoen SECO-ASSIST fnlg -

Q‘ apache [kafka ' Public

1 Pull requests 953 Open

9 ijjuma KAFKA-1;18: Support key updates with TLS 1.3 (#11966)

fwo

config

connect

core

docs

examples
generator/src
gradle
jmh-benchmarks

licenses

® Watch 11k ~ % Fork 11.3k ; Star 215k ~ / 4
v 11,016 Closed -
SECO-Assist
X S5aed178] 12 hours ago & 9,874 commits
IR: Adding kafka-storag.bat file (similar to kafka-storage.sh) fo... 16 days ago
Group: Apache Kafka
IR: Fix class comparisoff in *AlterConfigPolicy.Req -) - P —
33 kafka
9 Apache Kafka 1,747 usages
Contributors 884 §8 e .
Apache Kafka
MINOR : e _ |{DOWNLOAD | .
Q087 @V
KAFKA pL Jo » Apache Kafka 1,215 usages
. . ¥ l * Released January 24, 2022 % afka [Apache
MINOR 17k hH 3.0.0 ago Apache Kafka
KAFKA + 873 contributors 3) « Released September 21, 2021 190
2.8.0 §g e .
L s in examples R S ago N
anguages « Released April 19, 2021 Mu ’
e [99€d string fiell '3 7 o) |ra%e
® Java 74.2% ® Scala 22.7% ¢ Apache Kafka 526 usages
(#11885) * Released Dec 21, 2020 5 ago % N Uransforms [Apache |
® Python 2.7% Shell 0.2% S ——
Roff 0.1% Batchfile 0.1% (#11870) S ago
* Released Aug 3, 2020
MINOR: Add missing licenses and update versions in LICENSE-Dinary... 7 MONINs ago §8 * Apache Kafka 348 usages
Kafka-streams m
Apache Kalka

S

ECO-ASSIST

SECO-ASSiST

Social Fork

Social Fork

1. Social Forks 2. Variant Forks

Original project Original project

4—' Pull request Variant 1

Variant 2
Social Fork

VS

fwo SECO-ASSIST folg =

/4

q

LN

SECO _-Accict

fwo

SECO-ASSIST

@ gmk / gmk_firmware Public ® Watch 225 - ‘ % Fork 25.k |15wm—nsr k S . I k
N 25.1k Social Forks
¢ code \
masthr ~ i Public ® Watch 14 - % Fork 25.1k ¢ Star 142
orked from gmk/gmk_firmware
‘ zvecr VU <> Code 19 Pullrequests 3 () Actions
I _github 9_89 k f. Subl
E ublic
R germ /qmk_firmware OWatch 10 « % Fork 25k
- , forked from gmk/gmk_firmware
W api_data Thig
0 builddefd
- & ¢>Code {7 Pullrequests 1 (») Actions
2 Variant Forks
W drivers - ¥ master v ¥ 97branches © 495 tags Add file ~
W keyboard =)
i layouts (3
This branch is 64 commits ahead, 7119 commits behind gmk:master. {7 Contribute ~
W b i
boards ca keyboard firmware is maintained separately from gmk/master
M platform &3 e ———ee——————e— ——
[quantum b ~yantum fix- some ykrainian kev mannings 2 months ago
Open-sourd ZSA, forked for QMK Oryx Configurator (to safeguard stability)) ——

1. https://thenounproject.com/icon/stand-out-938131/fn|‘§ 11
.~

Open
Science

fwo

Variant

Social?

Variant

Social?

Social?

Variant

Java

Upstream

Fork 1

Fork 2

Fork 3

Fork 4

Fork 5

github

A

ecosystems

&h

Software family

&

=)
upstream =

Fork2 %g)

%

Fork5 g)

—

SECO-ASSIST

™
8" 2. Dedicated projects: Android, Blockchain, EcJ{ose, @ 4,

/"9:\ 1. Programming language: Java, Python, C, PHP, ...

¢
L X

SECO-Assist

fnlg =

Variant Forks — Motivations and Impediments

John Businge,” Ahmed Zerouali,* Alexandre Decan,” Tom Mens," Serge Demeyer,” and Coen De Roover,*
*University of Antwerp, Antwerp, Belgium
{ john.businge | serge.demeyer } @uantwerpen.be
University of Mons, Mons, Belgium
{ alexandre.decan | tom.mens } @umons.ac.be
Vrije Universiteit Brussels, Brussels, Belgium
{ ahmed.zerouali | coen.de.roover } @vub.be

Abstract—S

coding platforms centred around git provide
explicit faci to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and li
maintaining the co-e j

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variab

ing concrete impediments for

L. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]-[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]1-[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
n the common artefacts. Despite advanced code-
s, Businge et al. observed very limited code
integration, using the gir and GitHub facilities, between the
‘mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
c ion, making it ile to investigate i i
for co-evolution (how?).

We therefore explore two research questions:

RQI: Why do developers create and maintain variants
on GitHub? The literature pre-dating gir and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g.. diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the
mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

Variant forks - motivations and impediments.

Proceedings SANER 2022

SECO-ASSIST

SECO-Assist

Nnig

13

Why do developers create and maintain variants on GitHub? 4 (3¢
-

SECO-Assist

A Comprehensive Study of Software Forks: Clone-Based Variability Management
Dates, Reasons and Outcomes in the Android Ecosystem

Jobn Businge.” Moses Operga* Sarah Nadi' Engiscer Baisommgisha,’ and Thorwen Berger

Perspectives on Code Forking and “Mbseirs Unveesty f Science snd Techaebogs. Mbwres. Ui

"Mukoowe Usiverdty, Kampala, Ugands
Sustainability in Open Source Software L (o bans S o
GSyC/Libresoft, Uni How Has Forking Changed in the Last 20 Years?

A Study of Hard Forks on GitHub

- %
USA

Gregorio Robles an

Code Forking, Governance, and Sustainability| _ 3
. dman’, and Martin Fougere
in Open Source Software Helsinki, Finland

-

Ly n__2 1 (R -
Li N dTuho Lind Carnegi .
inus Nyman and Juho Lindman nken.f wsmac] CUrrent GitHub days only two
r Tamnore Finland The not f ' GitHub
. a . . otion o
Forks impacts and motivations in free and open son contl studies
Traditionally f
: opment branch .
Source prOJ eCtS conducted mostly 1n pre-Gitiiub day's s at harc 1 7
often seen critical as they may fragment a community. Today, in so] (%]
2 cial coding environments, open-source developers are encouraged : £ Hudesn i —
Rl i to fork a project in order to contribute to the community (which .;,':.',' . ‘ OoONes - L}_ A .@

we call social forks), which may have also influenced perceptions
. \ and practices around hard forks. To revisit hard forks, we identify, . . :
AI I Of t h e S e St u d I e S a n d m a ny Ot h e rS We re study, and classify 15,306 hard forks on GitHub and interview 18 Figure 1: Timeline of some P"?"l" o R forking events;
! owners of hard forks or forked repositories. We find that, among popularity approximated with Googie Trends.

others, hard forks often evolve out of social forks rather than being

conducted in the pre-GitHub days | el i i e

TNC 5 NG IS (YPICATTy TOUNG 11 The Tree ANd Open Source sortw ypically Tound in TOC and Open Source soltware Tera. p((-\'on[TOTRS: t

in, erf As a failure of cooperation in a context of open innovation,
. forking i ical and inf i bject of . In-depth II. BACKGROUND i 1 1 H H H

i . sy i s et -~ Little is known about the motivations of creating
ject1{ therefore conducted a detailed study of 26 forks from popular A. Perception of fork) . . .
while| free and open source projects. We created fact sheets, If the fear of forks is visible with companies, Gosain also 5 varia nts on SOC|aI Cod | ng p I atfo rms.
forkir| highlighting the impact and motivations to fork. We particularly points to the sensitivity of the open source community beside

velop| point to the fact that the desire for greater technical the forks and the fragmentation of projects [10).
ALEY. - PR P N

fwo SECO-ASSIST frle =

SECO-Assist

) GitHub

105 repositories

—)

05 fork variant
developers

card-sorting: from text to themes

We designed a 12-question survey that included both m
closed and open-ended questions. m open-ended questions

fwo SECO-ASSIST frle =

SECO-Assist

Any original developer [Any active common maintainer Decision to create Motivation for creating Motivation detail? —> | Open-ended

A

in variant? between variants? variant? variant?

[Imaintenance
[different goals

[Inew features

[customization
unmaintained feature
=== technology

=== enhancement

technical === new release
= stripped version

no individual [] responsiveness

— > di governance feature acceptance
—_————— - el | erences

= e [yes ™ othm @== supporting personal projects
==6--10 o - - St - z & === supporting upstream
~——c==>yes & no B legal —_ cozz ualig P
—— not sure qualty

e==unknown === community related
== |ocalization

. : : —— upstream lacks the resource:
Confl rmed previous == closed source
findings

none

New findings

fwo SECO-ASSIST fnlg =

Why do developers create and maintain variants on GitHub? ;f

Y
SECO-Assist

Previous studies identified four categories of motivations for creating variant forks:
* technical (e.g., diverging features),

* governance (e.g., diverging interests),
* |egal (e.g., diverging licenses), and
 personal (e.g., diverging principles).

D github

SOCIAL CODING

© Bitbucket |do they still hold?
4

fwo SECO-ASSIST frle @

[R59]. Motivation — governance. 'The PR to merge
the fork's new capabilities into the mainline code
was too large, [...] and my attempts to incorporate
feedback into the PR [...] ended upsetting the
primary maintainer who has been studiously
ignoring the pull request for three years. @
Motivation-detail — responsiveness.

R36]. Motivation — legal. “The founders
of the mainline had been absent from the
project for several years, but came back
and booted the maintainers off and [...]
shifted the project to a closed source.”
Motivation detail — closed source.

fwo SECO-ASSIST

!\h\’ SN .':\:1\

SECO-Assist

18]. motivation — others. “[The] maintainer was
not interested in a PR that added functionality
needed by a project I'm developing. [It] was
considerably easier to add the logic into the [new]
library than bolt it on”.

Motivation-detail — supporting personal projects.

Motivation detail? - | Open

-ended

[Imaintenance
[different goals
[Inew features

[customization
== ynmaintained feature

=== technology
== enhancement

technical == new release

| [] responsiveness

governance [| feature acceptance

difforences

I [:Iothers | === supporting personal projectﬂ

. legal === code quality

== community related
== |ocalization

== closed source

New findings

the resource!

100 of the 105 variant developers answered the
optional open-ended question

fnig

18

How do variant projects evolve with respect to the mainline?

SECO-Assist

SQ. Do the variant forks and the original project still discuss the main directions of the project?

never 4 53 (51.5%) |
yes 4 16 (15.5%)
technically diverged 1 11 (10.7%)
not sure N 8 (7.8%)
variant follows mainline 5(4.9%)
variant merged back 2 (1.9%)
common issues are discussed 1(1%)
conntrolled by same developers 1(1%)
in contact but rarely discuss 1(1%)
mamhn); hostile - 1(1%) never
mainnline not very active 1(19%)
only once 1(1%)
they swap techical details 1(1%)
variant is a mirror of mainline ! 1 (1%) _ . .))
0 10 20 30 40 50 60

% responses

[R57]. “We used to discuss but
not anymore since the projects
have technically diverged”

[R54]. “Made PRs with changes but
those have just been ignored. They're
still “open" with 0 comments from
the mainline dev”

= =

[R67]. “changes | | [R36]. “mainline
are out of is hostile to

scope.” variant.”

fwo SECO-ASSIST frle =

How do variant projects evolve with respect to the mainline? 4

LN

SECO-Assist
SQ. How often do the maintainers of the variant integrate the following types of changes to and from the mainline?
O~ * New features :.g
Mainlinel L= * Bugfixes Mainlinel .r\
O O O ity fi O O —()—
o 3 e Security fixes B A
=Optionally i s "Optionally
Variant (Mainline2) 2% W From * Refactorlngs- Variant (Mainline2) 2% & To
O O—s * Documentation O O—
0.0 e Others 0.0
& o
BN Never wmm Rarely Sometimes mmm Often WEE Always BN Never W Rarely Sometimes . Oftei . Always
Newfeatures” | 1\ New features \

Bug fixes
Security Fixes
Refactoring

Documentation

Others

0%

40% 30% 20% 10% 0%

Percentage of Responses

80% 70% 60% 50%

fwo

10% 20% 30%

I
I
—

N

40% 30% 20%

@ 80% 70% 60% 50%
Percentage of Responses

i technical divergence

ii. governance disputes

iii. diverging licenses,

iv. distinct development teams

Reasons for lack of interaction (Impediments):

SECO-ASSIST

10% }/o 10% 20% 30%

fnic

74

£4

20

PaReco: Patched Clones and Missed Patches among the
Divergent Variants of a Software Family

Poedjadevie Kadjel Ramkisoen', John Businge!*, Brent van Bradel!, Alexandre Decan?, Serge
Demeyer’, Coen De Roover?, and Foutse Khomh*

poedjadevieramkisoen@student.uantwerpen.be

(john.businge, Brent.vanBladel, serge.demeyer)@uantwerpen.be

alexandr ac.be,Coen.De.

be,fout: lymtl.ca

('Universiteit Antwerpen & Flanders Make, *FR.S.-FNRS & University of Mons, *Vrije Universiteit Brussel), Belgium,
“Polytechnique Montreal, Canada, *University of Nevada, Las Vegas, US.A.

ABSTRACT

Re-using whole repositories as a starting point for new projects is
often done by maintaining a variant fork parallel to the original
However, the common artifacts between both are not always kept
up to date. As a result, patches are not optimally integrated across
the two repositories, which may lead to sub-optimal maintenance
between the variant and the original project. A bug existing in both
repositories can be patched in one but not the other (we see this as a
missed opportunity) or it can be manually patched in both probably
by different developers (we see this as effort duplication). In this
paper we present a tool (named PaReco) which relies on clone de-
tection to mine cases of missed opportunity and effort duplication
from a pool of patches. We analyzed 364 (source—target) variant
pairs with 8,323 patches resulting in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed opportu-
nities. We achieve a precision of 91%, recall of 80%, accuracy of 88%,
and F1-score of 85%. Furthermore, we investigated the time interval
between patches and found out that, on average, missed patches in
the target variants have been introduced in the source variants 52
weeks earlier. Consequently, PaReco can be used to manage vari-
ability in “time” by automatically identifying interesting patches in
later project releases to be backported to supported earlier releases.

CCS CONCEPTS

- Software and its engineering — Software version control; Soft-
ware defect analysis; Software maintenance tools; Software con-
figuration management and version control systems

KEYWORDS

Github, Clone&own, Variants, Software family, Forking, Social cod-
ing, Bug-fixes, Effort duplication, Clone detection

1 INTRODUCTION

Code reuse is the practice of using existing code to speed up the
development process. “Traditional” code reuse is performed by
declaring a dependency towards another library or another pack-
age [21]. An alternative code reuse is the “clone&own” paradigm [9,
13, 14, 37, 51]. One would opt for the paradigm of “clone&ow,
over the “traditional” code reuse because the involved projects have
traceability links and easily share new updates,

The “clone&own” paradigm is a commonly adopted approach for
developing multi-variant software systems, where a new variant of
a software system is created by copying and adapting an existing
one and the two continue to evolve in parallel [9, 13, 14, 37, 51]. As
a result, two or more software projects will share a common code
base as wellas i project-specific code. The mul
software systems are referred to as a software family, or family in
short [13, 14]. With an increasing number of variants in the family,
development becomes redundant and maintenance efforts rapidly
grow [7, 23, 45, 54). For example, if a bug is discovered and fixed in
one variant, it is often unclear which other variants in the family
are affected by the same bug and how this bug should be fixed in
these variants. Although clone&own development paradigm has
limitations, studies have reported their prevalence on social coding
platforms like GitHub [9, 14]

This study aims to empirically quantify the extent to which di-
vergent variants exhibit redundancy and missed essential updates
concerning bug-fixes. Therefore, we present a tool (named PaReco)
that can support the maintenance of divergent variants. PaReco
mines bugfixes (patches) from a ool of updates in a source variant
and relies on clone detection to classify the patches as interesting
(i.e., redundant, missed) or uninteresting in the target variants. We
present the illustration of the source / target variants in Fig. 1.

To the best of our knowledge, this is the first large-scale study on
automatically identifying (and recommending) relevant bug fixes
to developers of “clone&own” variants. Our contributions are three-
fold. (1) We analyzed 364 (source—target) variant pairs and vali-
dated the tool's output. This results in a curated dataset containing
1,116 cases of effort duplication and 1,008 cases of missed oppor-
tunities. The curated datasets can be accessed in our replication
package [3]. (2) We quantify how many cases of effort duplication
and missed opportunities exist between divergent variants. Next,
we investigated the time interval between such patches to assess
the window of opportunity for relevant bug fixes. (3) We developed
PaReco which can be used as-is to support the management of vari-
ability in “space” (concurrent variations of the system at a single
point in time). This can be achieved through mining interesting
patches from one variant (source) and classify the patches as in-
teresting or not interesting to the target variants. Existing tools
in the GitHub marketplace notify projects about bug fixes, but are

SECO-ASSIST

Patched clones and missed patches among the
divergent variants of a software family.

Proceedings ESEC/FSE 2022

SECO-Assist

Nnig =

SECO-Assist

Problem

.
------------------ -

-
(e
’@o
9-
— ..
—
o]
O
|
[
|
»
| Illl
II

current_date
Il request

;
Pu \
- I
patch technicalla
Unique -E-
target git_head\i

variantl
(source)

Inherited Synchronized

commits commits commits
variant2
(target) \
divergence_date E‘i
- foo lot
missed opportunity

fork_date

SECO-ASSIST fn":g 2

fwo

Concrete Example: Missed Opportunity

Buggy code from upstream

1 return SECO-Assist
2 }

3 } while (p < (uintl6_t *)SYMVAL(__eeprom_workarea_end__)):

4 flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) - 1): G Buggy line

N 5

Patched code from upstream

1 return;

2 }

3 } while (p < (uintl6 t #)SYMVAL(_eeprom workarea end)): |

4 flashend = (uint32_t)(p - 1); &= Patched line
2 h

Diff for patch in upstream

@@ -363.7 +363,7 @@

- flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) - 1):

1

2

3 } while (p < (uintl6_t =)SYMVAL(__eeprom_workarea_end__)):

4 -]- Hunk
5 + flashend = (uint32_t)(p - 1):

File from divergent fork at git head

1 return ;

2 }

3 3 while (p < (uintl6 t =)SYMVAL(__eceprom workarea end)):

4 flashend = (uint32_t)((uintl6_t =)SYMVAL(__eeprom_workarea_end__) — 1): < p— Buggy line
2 h

fwo SECO-ASSIST frle =

Concrete Example: Effort Duplication

Buggy code from upstream

Buggy line

1 # http ://ss64.com/nt/syntax—esc. html
2 _escape_re = re.compile(r'(?<!'\)[&<>]|?<"\OH\"(N&<>\"D")
3 _escaper = partial(_escape_re.sub, lambda m: + m. group(0))

Patched code from upstream

http ://ss64.com/nt/syntax—esc. html

_escape_re = re.compile(r'(?<"\")[&<>]|?<"\OHI\"(N&<>\"D|(\]")

4= Patched line

W -

_escaper = partial(_escape_re.sub, lambda m:

Fm. group(0))

Diff for patch in upstream

1 @@ -24.7 +24.,7 @@

2

3 # http ://ss64 .com/nt/syntax —esc . html

4 - _escape_re = re.compile(r'(? <<!'"\M[&<>]1?<\O\"(N[&<>\"D")

5 + _escape_re = re.compile(r'(? <!\ H[&<>1<"\OHO\"(M&<>\"D|(\)"
6 _escaper = partial (_escape_re.sub, lambda m: "'+ m.group(0))

Hunk

File from divergent fork at git head

http ://ss64.com/nt/syntax—esc. html

N -

_escape_re = re.compile(r ' (?<!'\MH[&<>]C<\H\N&<>\"D|(\D")

== Patched line

~¢scaper = partiral(_escape_re.sub, lambda m:

+ m. group (U))

fwo

SECO-ASSIST

fnig

24

MO — Missed opportunity

source ED — Effort duplication ,
. upstream SP — Both buggy and patched lines _ b B
el NI — Uninteresting

CC - Unhandled programming language :
NE — Missing file in target SECO-Assist
EE — Error
PACHE
fkqo apache/kafka (upstream)

classmcatlons

-2
~J
(S

'y
Ly
o

N
14}

-~
(4]

o
o

number of patches
" 3

[E.

apache/kafka (upstream) - linkedin/kafka (fork)

o

linkedin/kafka (fork)

source

—
BN
o

-t
N
(=]

: :frz"eam =. Microsoﬁ microsoft/azure-tools-for-java (upstream)

<
o

60

40 A
- _ m EN
MO

ED SP NI CcC NE
classifications

microsoft/azure-tools-for-java (upstream) - JetBrains/azure-tools-for-intellij (fork)

fwo SECO-ASSIST frle =

JetBrains/azure-tools-for-intellij (fork)

number of patches

8,323 patches from 364 source variants

N 1,008 1,116 101 source SECO-Assist
¢
o 2 T ¥ ‘ 2 B upstream
:E, 10 1 2,225 interesting patches z ¢, , . fork
© ¢ i ‘
o ¢ ¢
Y
O .
“ 10 f ! ¢ ‘ !
O ¢ s ¢ 8
2 ¢ ¢
= § o § ' §
=) ¢ o o ¢ .
M I
10 ¢ ¢ ¢ ¢ ¢ ¢

\MO ED y NI CcC EE
classifications

p— - : g—a MO — Missed opportunity
n ,‘l n ED — Effort duplication

SP — Both buggy and patched lines

y CC - Unhandled programming language

91.0% 80.2% 88.0% 85.3% NE — Missing file in target
EE — Error

fwo SECO-ASSIST frlg =

)

Reengineering Project 2021—2022

$Skafka [T3)

LinkedIn is a clone-and-own variant of Apache Kafka that was created
by copying and adapting the existing code of Apache Kafka.

LinkedIn has 500 individual commits, and Apache Kafka has 3,103
individual commits.

Your assignment is to identify numerous patches from patches.xls that
are of different sizes and integrate them in the source variant
LinkedIn. The size can be measured in terms of number of commits,
files_changed, added_lines, deleted_lines, modules.

WO SECO-ASSIST

§ -

SECO-Assist

fnig

27

Bkafka. O

O w0

W

SECO-Assist
=loh

~

APACHE KAFKA o

A &

-

N g

i TOPIC 1 TOPIC 2 TOPIC 3 _/
3 | IDDE DDDE DEEE
& CEE EEEE EEEE
W, L CL T TTEEEEEEPPP PARTITIONS teeeeeceseecenennncanennasd

-
SdNO¥O
43IWNSNOD

fwo SECO-ASSIST frlg =

Cherry Picking — Merge Conflicts

T B A Shabmosetet v+ P B GG O ¢V v 220 Qo
} Coment bo b 04 o 8082 Q — eAS et e B A et me sl grade Rafva & o gy i s 2 F sormen B] ettt A S |
- u 2 nel+ i [Qe T 4 L ny
Charges L@ @ Nerge by for Aosersdh ' ye D ", > e & o e v pefSenitan . e
Lrrver yored o, Aowvy ren conictng chenges y Desctguon v wgvgneenn » & B O 7 No changes. | confict.
& Local Changes Show Cetads Rewst & Changes from chesry-pick lTaBdciie Show Detadn | &% ~
The ASF Licenses thls file to Y L I0e AN Llcssass fbda file 2 ah . AN icoraes s file to Yo
ook : Y Y™ 250 *LisenssDs wou amy net wee. ¢l -
t s v . s Lice Y d * _‘l the Lizeoss Yow B0y cOtadn @ ¢ '."“.‘“”"".‘i
Amera 3 b)
Asplies Sonargy REER LN SR000e orgl Lisesses A e QRO L Lo TR ‘ bita llenn. gasche srallice ‘.:A,u ‘
sliants wlpny . :
58 oF by s low . L8 touire g aasid ¢ X, 1 s e ‘ y { o
' o the L alstridyted ¢ Llgesse 43 U 11is ¢ ¢ License is o8
AL RAEVAN ® v * 1/ e NITHOUT BARRANTIE i M ITIONS O
Ccor ™" e ¢ " s 4 /i A~! " e [Cerse f the soecls '.‘
. 4 ' o The ense U slt s . ¢ Licers
On Log s o -
¢ { { I
i Cepixey: 17, aaiNey*: 17, "apiNey*: 17, .
apixey aaiNeyt: 1 a3iNey": 1 oo
: "Lyt Tregueat”, "tyse™: “regquest”, "type®: “regquesnt*, »”
opd "same”: "SaalMesdahakeRegoent”, "nase”: "Sealrandstaloefizouest”, - "nase”: "Saaliandshakeleguest”, IV T e
. 1‘... Yerslion 1 sopports SASL_ASTMENT LA xcaies 1 aueeaces J45L AUTMENTIC Veraloo I supperts SASL AUTAENTS 1o v
el “welidVersiom”: "0-1", xX»: 4 &« x / NOTE: Versd coonat be soxily O

g "faxitleVersiona™: "pome”,
Bl trielae: |

v Remote { "nese”: "Mechanise®, "type": "1 “tieios: |

W mead "shout®: "The SASL sechanise ot { "rane*;: "Nachanisa®, “type*: "str)
= oright | 00t "The SASL sechanise chosd

*valicdversions”: "9-2%,

f o)

"flaxiblaVersions®™s "2+,

L e
*HE o
=

WO SECO-ASSIST

/7 client negotiation for climmts <
/7 See Bitoal/lisanes co0che . orgls
*validversions™: "9-3",
“fielos: |]
{ "nase”; "Mechanise®, “type': st
et "The SASL mechanise chas

—we: s wueey weguemstew wepme. soe
Q et Log
MM U UTEE Teeie” P Aot W &

SECO-Assist

fnig

fwo

SECO-ASSIST

SECO-Assist

30

Original project

Variant 1

Social Fork

Variant 2

Social Fork

original develop: active maintainers? lecision? motivation?

|:|technical
no individual

|:| governance

™~
- /
s [Cyes _ I:lcommunity [Hotrers
= ——es i legal
——not sure

motivation d

[D -Assist
[dit
[Ine
L]
&= un
te
e -

N
—stl

[re

[fe
—dil
Su
== su
== (0
=0
== ol
—

= (¢

number of patches
X 8 & 8 8 8 &

o

—
MO

source
. upsiream
. fork

—
ED SP ANA cC NE

classifications

fwo

SECO-ASSIST

fnic

31

